You in college stop cheating
Answer:
*If the particles are deflected in opposite directions, it implies that their charges must be opposite
*the force is perpendicular to the speed, therefore it describes a circular movement, one in the clockwise direction and the other in the counterclockwise direction.
Explanation:
When a charged particle enters a magnetic field, it is subjected to a force given by
F = q v x B
where bold letters indicate vectors
this expression can be written in the form of a module
F = qv B sin θ
and the direction of the force is given by the right-hand rule.
In our case the magnetic field is perpendicular to the speed, therefore the angle is 90º and the sin 90 = 1
If the particles are deflected in opposite directions, it implies that their charges must be opposite, one positive and the other negative.
Furthermore, the force is perpendicular to the speed, therefore it describes a circular movement, one in the clockwise direction and the other in the counterclockwise direction.
The answer is b or d u chooose i don’t know which one
Answer:
100 miles North East.
Explanation:
Please see attached photo for diagram.
In the attached photo, X represents the magnitude of the total displacement of the train.
Thus, we can obtain the value of X by using the pythagoras theory as illustrated below:
X² = 80² + 60²
X² = 6400 + 3600
X² = 10000
Take the square root of both side
X = √10000
X = 100 miles.
Therefore, the magnitude of the total displacement of the train is 100 miles North East.
First we have to find out the gravity on that planet. We use Newton second equation of motion. It is given as,
s = ut +(gt^2)/2
Distance s = 25m
Time t = 5 s
Velocity u = 0
By putting these values,
25 = 1/2.g.(5)²
g = 2
So the gravity on that planet is 2. Lets find out the weight of the astronaut.
Mass of the astronaut on earth m = 80 kg
Weight of astronaut on earth W = mg = (80)(9.8) = 784 N
Weight of astronaut on earth like planet = (80)(2) = 160 N
x = 160N