Complete Question
The complete question is shown on the first uploaded image
Answer:
The value is 
Explanation:
Generally for an n-type semiconductor the current density is mathematically represented as

Here
is mathematically represented as

=> 
=> 
So

From the diagram 
=> 
So


So from 
substitute
for q and
and from the diagram
So


Answer:
acceleration
Explanation:
acceleration =velocity final-velocity initial /time
Answer:
Hope it will help you a lot.
A projectile fired upward from the Earth's surface will usually slow down, come momentarily to rest, and return to Earth. For a certain initial speed, however it will move upward forever, with its speed gradually decreasing to zero just as its distance from Earth approaches infinity. The initial speed for this case is called escape velocity. You can find the escape velocity v for the Earth or any other planet from which a projectile might be launched using conservation of energy. The projectile of mass m leaves the surface of the body of mass M and radius R with a kinetic energy Ki = mv²/2 and potential energy Ui = -GMm/R. When the projectile reaches infinity, it has zero potential energy and zero kinetic energy since we are seeking the minimum speed for escape. Thus Uf = 0 and Kf = 0. And from conservation of energy,
Ki + Ui = Kf + Uf
mv²/2 -GMm/R = 0
∴ v = √(2GM/R)
This is the expression for escape velocity.