<u>Answer</u>
The acceleration is
to the nearest tenth
<u>Explanation</u>
Since the car was travelling at
before it starts to decelerate, the initial velocity is
.
The final velocity is
, because the car came to a stop.
The time taken is
.
Using the Newton's equation of linear motion,
, we find the acceleration by substituting the known values.
This implies that,

This gives us,


We divide both sides by 15 to get,

or

Answer:
2 m
Explanation:
The displacement of any body is the shortest distance in an object's path between its initial and final point.
The ball would travel 3 m from the point of throwing then fall down 5 m to the ground. The total distance traveled is 7 m.
The displacement of the ball will be the distance from the point of throwing to the ground i.e., 2 m as it is the shortest distance between the initial and final point of the ball's journey.
(A) 19.2 W
<u>Explanation:</u>
Given-
Voltage drop, V = 24 V
Resistor = 30Ω
Current, I = 0.8 A
Power, P = ?
We know,
P = VI
P = 24 (0.8)
P = 19.2 W
Therefore, the power conducted by the resistor is 19.2 W
Answer:
θ = 10.28º
Explanation:
To find the angle of refraction use the equation of refraction
n₁ sin θ₁ = n₂ sin θ₂
where index 1 is for incident light and index 2 is for refracted light.
sin θ₂ = n₁ / n₂ sin θ
let's calculate
sin = 1 / 1.3 sin 0.23
sin = 0.175
θ= 0.17528 rad
let's reduce to degrees
θ = 0.17528 rad (180ª / pi rad)
θ = 10.28º