1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
drek231 [11]
3 years ago
8

A car travels 50km in 2 hours.

Physics
1 answer:
ser-zykov [4K]3 years ago
3 0

Answer: it will travle 25km pr hour

Explanation:

sevide both by 2

You might be interested in
How to calculate time using power and energy
Troyanec [42]

Answer:

The formula that links energy and power is: Energy = Power x Time. The unit of energy is the joule, the unit of power is the watt, and the unit of time is the second.

Explanation:

7 0
3 years ago
Bowen’s reaction series illustrates relations between:
Finger [1]

C. Temperature, chemical composition and mineral structure

Explanation:

The Bowen's reaction series illustrates the relationship between temperature, chemical composition and mineral structure.

The series is made up of a continuous and discontinuous end through which magmatic composition can be understood as temperature changes.

  • The left part is the discontinuous end while the right side is the continuous series.
  • From the series, we understand that a magmatic body becomes felsic as it begins to cool to lower temperature.
  • A magma at high temperature is ultramafic and very rich in ferro-magnesian silicates which are the chief mineral composition of olivine and pyroxene. These minerals are predominantly found in mafic- ultramafic rocks. Also, we expect to find the calcic-plagioclase at high temperatures partitioned in the magma.
  • At a relatively low temperature, minerals with frame work structures begins to form . The magma is more enriched with felsic minerals and late stage crystallization occurs here.

Learn more:

Silicate minerals brainly.com/question/4772323

#learnwithBrainly

5 0
4 years ago
What are the characteristics of the radiation emitted by a blackbody? According to Wien's Law, how many times hotter is an objec
jasenka [17]

Answer:

a) What are the characteristics of the radiation emitted by a blackbody?

The total emitted energy per unit of time and per unit of area depends in its temperature (Stefan-Boltzmann law).

The peak of emission for the spectrum will be displaced to shorter wavelengths as the temperature increase (Wien’s displacement law).

The spectral density energy is related with the temperature and the wavelength (Planck’s law).

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wave length of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

Explanation:

A blackbody is an ideal body that absorbs all the thermal radiation that hits its surface, thus becoming an excellent emitter, as these bodies express themselves without light radiation, and therefore they look black.

The radiation of a blackbody depends only on its temperature, thus being independent of its shape, material and internal constitution.

If it is study the behavior of the total energy emitted from a blackbody at different temperatures, it can be seen how as the temperature increases the energy will also increase, this energy emitted by the blackbody is known as spectral radiance and the result of the behavior described previously is Stefan's law:

E = \sigma T^{4}  (1)

Where \sigma is the Stefan-Boltzmann constant and T is the temperature.

The Wien’s displacement law establish how the peak of emission of the spectrum will be displace to shorter wavelengths as the temperature increase (inversely proportional):

\lambda max = \frac{2.898x10^{-3} m. K}{T}   (2)

Planck’s law relate the temperature with the spectral energy density (shape) of the spectrum:

E_{\lambda} = {{8 \pi h c}\over{{\lambda}^5}{(e^{({hc}/{\lambda \kappa T})}-1)}}}  (3)

b) According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wavelength of 450 nm, than a object whose spectrum peaks in the red, at 700 nm?

It is need it to known the temperature of both objects before doing the comparison. That can be done by means of the Wien’s displacement law.

Equation (2) can be rewrite in terms of T:

T = \frac{2.898x10^{-3} m. K}{\lambda max}   (4)

Case for the object with the blackbody emission spectrum peak in the blue:

Before replacing all the values in equation (4), \lambda max (450 nm) will be express in meters:

450 nm . \frac{1m}{1x10^{9} nm}  ⇒ 4.5x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{4.5x10^{-7}m}

T = 6440 K

Case for the object with the blackbody emission spectrum peak in the red:

Following the same approach above:

700 nm . \frac{1m}{1x10^{9} nm}  ⇒ 7x10^{-7}m

T = \frac{2.898x10^{-3} m. K}{7x10^{-7}m}

T = 4140 K

Comparison:

\frac{6440 K}{4140 K} = 1.55

The object with the blackbody emission spectrum peak in the blue is 1.55 times hotter than the object with the blackbody emission spectrum peak in the red.

4 0
3 years ago
What happens when charged object is brought near uncharged object?<br> Attract or Repel ?
Makovka662 [10]
When a charged object is brought near to but does not touch a neutral object, it causes the side of the neutral object that the charged object is near to become the other charge. It causes charge migration within the neutral object so the two charges (positive and negative) move to opposite sides of the object. Because the two objects do not touch, they do not repel each other, but rather have a slight attraction because of charge migration. If the two object were to touch then they would repel.
5 0
3 years ago
Read 2 more answers
Circular motion occurs on earth true or false
Bingel [31]
Circular Motion does occur on earth, so yes, true
8 0
4 years ago
Read 2 more answers
Other questions:
  • The attractive electrostatic force between the point charges 6.14×10−6 c and q has a magnitude of 0.845 n when the separation be
    11·1 answer
  • Which of the following is not a potential sign of chemical change? a. release of gas c. change of color b. evaporation of water
    9·1 answer
  • Why is it important for DNA to be copied before cell division?
    15·1 answer
  • According to Newton’s First Law of Motion, if a ball is rolled in a straight line in an open field, what will happen to the ball
    5·1 answer
  • This is the equation for the formation of magnesium chloride. Mg(s) + 2HCl(l) → MgCl2(aq) + H2(g) Which are the reactants and th
    13·1 answer
  • When the temperature of a certain solid, rectangular object increases by AT, the length of one
    12·1 answer
  • Many bugs can reproduce both sexually and asexually. When would asexual reproduction be
    13·1 answer
  • How do mass and distance affect the gravitational force between two objects?
    8·1 answer
  • Which of the following is true for gravitational force?
    12·2 answers
  • How much force is needed to pull a spring with a spring constant of 20 N/m a distance of<br> 25 m?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!