Answer:
36,67 degrees Celsius
Explanation:
The simplest way to approach this problem, given the information provided, is to simply start with the speed difference.
Goal: 353 m/s
Start: 343 m/s (at 20 degrees Celsius).
Difference: 10 m/s
Variation rate: 0.60 m/s/d (d = degree)

So, 16,67 degrees more than the starting point.
The temperature will then be 36.67 degrees Celsius, when the sound travels at the speed of 353 m/s.
Answer:
option C
Explanation:
Given,
Refractive index of medium 1 = n₁
Refractive index of medium 2 = n₂
For total internal reflection to take place light should move from denser medium to the rarer medium.
Here Total internal reflection take place at the boundary of medium 1 and medium 2 so, the refractive index of medium 1 is more than medium 2
n₁ > n₂
The correct answer is option C
Answer:
Explanation:
Electric field E = 4 x 10⁷ V / m
Dielectric constant k = 24
capacitance of capacitor
C = kε₀ A / d
d = plate separation
A = plate area
C = .89 x 10⁻⁶
V / d = electric field
for minimum d , electric field will be maximum
V / d = 4 x 10⁷
1930 / d = 4 x 10⁷
d = 1930 / 4 x 10⁷
d = 482.5 x 10⁻⁷ m
= 48.25 x 10⁻⁶ m
C = kε₀ A / d
.89 x 10⁻⁶ = 24 ε₀ A / d
A = .89 x 10⁻⁶ X d / 24 ε₀
A = .89 x 10⁻⁶ X 48.25 x 10⁻⁶ / 24 x 8.85 x 10⁻¹²
= 42.9 / 212.4
= .2019 m²
<span>The forces of nature are phase forces.</span>
<span>(9 kg)(5 m/s^2) = M(3 m/s^2)
</span><span>that the acceleration of the object varies inversely with its mass.</span>