Answer:

Explanation:
We know that from Newton's second law of motion, F=ma hence making acceleration the subject then
where a is acceleration, F is force and m is mass
Also making mass the subject of the formula 
For
and
hence 
Complete question:
At a particular instant, an electron is located at point (P) in a region of space with a uniform magnetic field that is directed vertically and has a magnitude of 3.47 mT. The electron's velocity at that instant is purely horizontal with a magnitude of 2×10⁵ m/s then how long will it take for the particle to pass through point (P) again? Give your answer in nanoseconds.
[<em>Assume that this experiment takes place in deep space so that the effect of gravity is negligible.</em>]
Answer:
The time it will take the particle to pass through point (P) again is 1.639 ns.
Explanation:
F = qvB
Also;

solving this two equations together;

where;
m is the mass of electron = 9.11 x 10⁻³¹ kg
q is the charge of electron = 1.602 x 10⁻¹⁹ C
B is the strength of the magnetic field = 3.47 x 10⁻³ T
substitute these values and solve for t

Therefore, the time it will take the particle to pass through point (P) again is 1.639 ns.
1) use energy from food
2) get rid of wastes
3) maintain
Answer:
Part A) the angular acceleration is α= 44.347 rad/s²
Part B) the angular velocity is 195.13 rad/s
Part C) the angular velocity is 345.913 rad/s
Part D ) the time is t= 7.652 s
Explanation:
Part A) since angular acceleration is related with angular acceleration through:
α = a/R = 10.2 m/s² / 0.23 m = 44.347 rad/s²
Part B) since angular acceleration is related
since
v = v0 + a*(t-t0) = 51.0 m/s + (-10.2 m/s²)*(3.4 s - 2.8 s) = 44.88 m/s
since
ω = v/R = 44.88 m/s/ 0.230 m = 195.13 rad/s
Part C) at t=0
v = v0 + a*(t-t0) = 51.0 m/s + (-10.2 m/s²)*(0 s - 2.8 s) = 79.56 m/s
ω = v/R = 79.56 m/s/ 0.230 m = 345.913 rad/s
Part D ) since the radial acceleration is related with the velocity through
ar = v² / R → v= √(R * ar) = √(0.23 m * 9.81 m/s²)= 1.5 m/s
therefore
v = v0 + a*(t-t0) → t =(v - v0) /a + t0 = ( 1.5 m/s - 51.0 m/s) / (-10.2 m/s²) + 2.8 s = 7.652 s
t= 7.652 s
Answer:
9V
Explanation:
The potential difference across the terminal as the same and thats because we are assuming that the source has no internal resistance.
Internal resistance are usually little resistances in the supply.