Answer:
1. 21.66 Ohms
2. 3.38 A
3. 6.7 V
Explanation:
1. Req = 6+2 = 8 Ohms (2 and 6 are in a series circuit)
Req = 1/8 +1/4 = 3/8 = 8/3 = 2.66 Ohms (8 and 4 are parallel, so we will add them using this equation)
Req = 2.66 + 1 + 9 + 3 + 6 = 21.66 Ohms
2. I = V/R = 9/2.66 = 3.38 A (In a series circuit, the current is the same across the resistors, so we will add them and divided them by 9 volts)
3. V = IR = 3.38 x 2 = 6.7 V (In a series circuit, the voltage is different, so each resistor will have a different voltage.)
I hope this helps. I am not an expert in physics but its ok :)
<u><em>Note: If the answer benefited u, mark me as the brainliest answer if u can, thx.</em></u>
The best and most correct answer among the choices provided by your question is the first choice or letter A.
Heat transfers associated with phase changes known as latent or "hidden" heats because h<span>eat absorbed or released in a phase change is measured in kJ while temperature is measured in °C.</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
A. True
Hope this helps :)
Explanation:
Given that,
The mean kinetic energy of the emitted electron, 
(a) The relation between the kinetic energy and the De Broglie wavelength is given by :



(b) According to Bragg's law,

n = 1
For nickel, 



As the angle made is very small, so such an electron is not useful in a Davisson-Germer type scattering experiment.