Missing question in the text:
"A.What are the magnitude and direction of the electric field at the point in question?
B.<span>What would be the magnitude and direction of the force acting on a proton placed at this same point in the electric field?"</span>
<span>Solution:
A) A charge q </span>under an electric field of intensity E will experience a force F equal to:

In our problem we have
and
, so we can find the magnitude of the electric field:

The charge is negative, therefore it moves against the direction of the field lines. If the force is pushing down the charge, then the electric field lines go upward.
B) The proton charge is equal to

Therefore, the magnitude of the force acting on the proton will be

And since the proton has positive charge, the verse of the force is the same as the verse of the field, so upward.
The frequency of a wave is the reciprocal of its period.
A period of 0.008 sec means a frequency of
1 / 0.008 sec = 125 per sec . (125 Hz)
Answer:
2,25 g/cm3
Explanation:
Hi, you have to know one thing for this.. Density = mass/Volume,
When you have the loaf of bread with 3100 cm3 and a density of 0.90 g/cm3, the mass of that bread is 2790 g because of if you isolate the variable mass from the equation you get.. mass= density x volume
Later, have on account the mass never changes, so you crush the bread and the mass is the same.. so when you have the mashed bread.. you know that the mass is 2790 g and the volume of the bag is 1240 cm3, so you apply the main equation.... density=2790 g / 1240 cm3 , so density = 2,25 g/cm3
Complete Question
Question 18 (3 points) Solve the problem. (3 points) A solar reflector is made using 31 identical triangular-shaped mirrors, each having sides 2.4m, 2. 3m, 1.5 m. What is the total surface area of the reflector?
A) 33 m2
B) 86 m2
C) 52 m2
D) 34 m2
Answer:
The value is 
Explanation:
From the question we are told that
The sides are a = 2.4 m
b = 2.3 m
c = 1.5 m
Generally the semi perimeter is mathematically represented as

=> 
=> 
Generally the using Heron's formula we have that the surface are a is mathematically represented as

=> 
=> 
Given:
m = 4 kg, the mass of the object
h = 5 m, distance fallen
Neglect air resistance.
The PE (potential energy) is
PE = mgh = (4 kg)*(9.8 m/s²)*(5 m) = 196 J
The PE is converted into KE (kinetic energy) after the fall.
Therefore the PE decreased by 196 J ≈ 200 J
Answer: d. It has decreased by 200 J