1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dahasolnce [82]
3 years ago
15

What mass of oxygen is needed to combust and produced 6.4 moles of carbon dioxide gas?

Chemistry
1 answer:
N76 [4]3 years ago
6 0
You have already gotten the balanced equation. And the ratio of mol number of reactants and production is the ratio of coefficient. So there is 6.4/8*11=8.8 mol oxygen needed. The mass is 8.8*32=281.6 g.
You might be interested in
· Discuss 2 faults of the Bohr model.
xxTIMURxx [149]

Answer:

It is in violation of the Heisenberg Uncertainty Principle. The Bohr Model considers electrons to have both a known radius and orbit, which is impossible according to Heisenberg. ... The Bohr Model does not account for the fact that accelerating electrons do not emit electromagnetic radiation

6 0
3 years ago
Read 2 more answers
Need help with chemistry question
horrorfan [7]

This is a multiple question and here are all the answers.

Qestion 1.) Which is not a permissible set of quantum numbers? Identify the subshell (if the quantum numbers identify a possible state).

I. n = 2, ℓ = 0, mℓ = 0

II. n = 3, ℓ = 2, mℓ = 2

III. n = 2, ℓ = 1, mℓ = –1

IV. n = 3, ℓ = 3, mℓ = 0

V. n = 4, ℓ = 3, mℓ = –3

Answer:

  • The combination that is not permissible is IV. n = 3, ℓ = 3, mℓ = 0.

  • Se below to identify the subshells.

Explanation:

The electrons are identified by a set of four quantum numbers.

The first quantum number, n, is the principal quantum number and it tells the shell. The second quantum number,ℓ , is the azymuthal quantum number and it tells the subshell.

The letters used to indicate the subshells are:

  s:  ℓ  = 0

  p:  ℓ  = 1

  d:  ℓ  = 2

  f:  ℓ  = 3

The third and fourth quantum numbers are mℓ (magnetic quantum number) and s (spin).

The rules that apply to predict which quantum numbers are possible are:

  • n: 1, 2, 3, 4, 5, 6, 7 (an integer greater than 0)

  • ℓ: 0, 1, 2, 3, ..., n-1 (an integer less than n)

  • mℓ: an integer from - ℓ to + ℓ

  • s: - 1/2 or +1/2

Two electrons in an atom cannot have the same set of 4 quantum numbers.

With that:

I. n = 2, ℓ = 0, mℓ = 0

  • This combination of three quantum numbers is permissible, since n is a positive integer, ℓ is less than n, and mℓ is in the interval +ℓ  to - ℓ.

  • The combination n = 2 and ℓ = 0 means the subshell is 2p.

   

II. n = 3, ℓ = 2, mℓ = 2

  • This combination of three quantum numbers is permissible, since n is a positive integer, ℓ is less than n, and mℓ is in the interval +ℓ  to - ℓ.

  • The combination n = 3 and ℓ = 2 means the subshell is 3d.

III. n = 2, ℓ = 1, mℓ = –1

  • This combination of three quantum numbers is permissible, since n is a positive integer, ℓ is less than n, and mℓ is in the interval +ℓ  to - ℓ.

  • The combination n = 2 and ℓ = 1 means the subshell is 2p.

IV. n = 3, ℓ = 3, mℓ = 0

  • This set of three quantum numbers is not permissible, since ℓ = 3 is not less than n = 3.

V. n = 4, ℓ = 3, mℓ = –3

  • This set of three quantum numbers is permissible, since n is a positive integer, ℓ is less than n, and mℓ is in the interval +ℓ  to - ℓ.

  • The combination n = 4 and ℓ = 3 means the subshell is 4f.

Question 2.)What is the difference between the 2pz and the 3pz orbitals? Which quantum numbers in the orbital designation are different? Which will be the same? What does this indicate about the orbitals?

Answer:

The difference between    2p_z    and    3p_z    (note that the letter z is a subscript) is in the first quantum number.

The first quantum number indicates the main energy level and so it is related with the size of the orbital.

So, the 3pz orbital is bigger than the 2pz orbital.

The second quantum number is related to the letter p, so the same letter indicates the same shape of the orbital. Remember the table for the letters used to indicate the subshells are:

  s:  ℓ  = 0

  p:  ℓ  = 1

  d:  ℓ  = 2

  f:  ℓ  = 3

So, the scond quantum number for the two orbitals is ℓ  = 1.

The subscript indicates the space orientation. So, since both orbitals have the same subscript, z, they have the same orientation.

In conclusion, the only difference between those orbitals is the size of the orbitals, but they have the same shape and orientation.

3.)What is the maximum number of electrons that can have n = 3 and ms = + ½ ?

Answer:

  • 9 electrons

Explanation:

Using the rules,  for n = 3

  • ℓ can be 0, 1, or 2;

  • mℓ can be 0 for ℓ = 0,  

  • mℓ can be -1, 0, or -1 for  for ℓ = 1, and

  • mℓ can be -2, -1, 0, +1, or +2 for ℓ = 2,

You can get the possible sets of quantum numbers (with n = 3):

  • (3, 0, 0, +1/2)
  • (3, 0, 0, -1/2)
  • (3, 1, 0, +1/2)
  • (3, 1, 0, -1/2)
  • (3, 1, 1, +1/2)
  • (3, 1, 1, -1/2)
  • (3, 1, -1, +1/2)
  • (3, 1, -1, -1/2)
  • (3, 2, 0, +1/2)
  • (3, 2, 0, -1/2)
  • (3, 2, -2, +1/2)
  • (3, 2, -2, -1/2)
  • (3, 2, -1, +1/2)
  • (3, 2, -1, -1/2)
  • (3, 2, 1, +1/2)
  • (3, 2, 1, -1/2)
  • (3, 2, 2, +1/2)
  • (3, 2, 2, -1/2)

So, those are a total of 18 electrons from which half have n = 3 and ms = +1/2.

Hence, 9 electrons can have n = 3 and ms = +1/2.

5 0
3 years ago
What kind of electrons are involved in chemical bonding?
mamaluj [8]
Bonding electrons are involved in chemical bonding these electrons have their valnce shell incomplete
6 0
3 years ago
What is the name of the large dome-shaped muscle under your lungs that helps you breathe?
aivan3 [116]
That would be your diaphragm :)
6 0
3 years ago
Read 2 more answers
Reaction 1: Solid sodium hydroxide dissolves in water to form an aqueous solution of ions. ????????????H(????) → ????????+(?????
Dennis_Churaev [7]
Hi, here is a basic summary of what we did in a lab; there were 3 reactions: The procedure: Reaction 1: Solid sodium hydroxide dissolves in water to form an aqueous solution of ions. NaOH(s)-> Na+(aq) + OH-(aq) ΔH1=-34.121kJ Reaction 2: Solid sodium hydroxide reacts with an aqueous solution of HCl to form water and an aqueous solution of sodium chloride. NaOH(s) + H+(aq) + Cl-(aq) -> H2O + Na+(aq) + Cl-(aq) ΔH2=-83.602kJ Reaction 3: An aqueous solution of sodium hydroxide reacts with an aqueous solution of HCl to form water an an aqueous solution of sodium chloride. H+(aq) + OH-(aq) + Na+(aq) + Cl-(aq) -> H2O + Na+(aq) + Cl-(aq) ΔH3= -50.2kJ The ΔH values were calculated by dividing the heat gained by the number of moles (each reaction had 0.05moles of NaOH) The problem: Net ionic equations for reaction 2 & 3: 2: NaOH(s) + H+(aq) -> H2O + Na+(aq) 3: H+(aq) + OH-(aq) -> H2O i) In reaction 1, ΔH1 represents the heat evolved as solid NaOH dissolves. Look at the net ionic equations for reactions 2 and 3 and make similar statements as to what ΔH2 and ΔH3 represent. ii) Compare ΔH2 with (ΔH1 + ΔH3). Explain in sentences the similarity between these two values by using your answer to #5 above. Attempt at answering: i) Firstly, ΔH2 represents the heat evolved as the hydrogen ion displaces the sodium ion, creating a single displacement reaction. ΔH3 represents the heat evolved as the hydrogen and hydroxide ion form water via a neutralization reaction. ii) ΔH2 is equal to (or supposed to be, this is a source of error while calculating) (ΔH1 + ΔH3). The similarity between these two values is that .. (this is where I get confused!)

Source https://www.physicsforums.com/threads/calorimetry-help-chemistry.399653/
5 0
3 years ago
Other questions:
  • How do sulfur and phosphorus move from the biotic to the abiotic pools during their cycle?
    15·1 answer
  • The area of the circular base of a can of
    12·1 answer
  • Why clouds look white?​
    8·1 answer
  • Which statement describes how polymerization relates to proteins and amino acids?
    15·1 answer
  • Molarity is not fun... Help please!
    7·1 answer
  • Complete the graphic organizer.<br> Basic Parts of an Atom
    15·1 answer
  • Determine which intermolecular forces are the dominant (strongest) forces for a pure sample of each of the following molecules b
    13·1 answer
  • Why is this a redox reaction?
    14·1 answer
  • How a non-polar molecule can ve madre of polar bonds?
    14·1 answer
  • How can you tell the difference between two clear liquids
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!