I’m guessing is because she uses force to throw the ball, allowing the energy to move the person.
sorry if it’s not 100% correct
A). 600,000 Hz or 600 KHz
Yes. Commercial broadcasters operate here.
This is the '600' on your AM radio dial.
B). 60 Hz
No. In principle, this frequency might be used for communication or
commercial broadcasting, but it suffers from two inconvenient truths:
-- An efficient antenna for 60 Hz ... either transmitting or receiving ...
needs to be almost 780 miles long.
-- This is the frequency of the electric power utility in the US and
Canada, so every outlet, wire, cable, lamp cord, and electric line
on a pole RADIATES a little bit of signal at this frequency. That's
an awful lot of interference.
C). 6,000,000 Hz or 6 MHz
There's a lot of broadcasting activity here, but it's not commercial
music, news, and sports into local homes and cars.
It's foreign short-wave broadcast, bringing news, propaganda, and
culture from one country to another. Pretty interesting to browse.
D). 6,000 Hz or 6 KHz.
No. Not used for communication, for an interesting reason:
This frequency is smack in the middle of the human hearing range.
So if it were used for communication ... with high-power transmitters
here and there ... then you wouldn't hear it in the air. But wherever
wires were being used to carry sound ... your stereo's speaker wires,
wires from your player to your ear-buds, wires to the telephones in
your house etc ... the wires would act as antennas, picking up
broadcasts at 6 KHz, and the broadcasts would get into everything.
Not a smart plan.
Answer:
T = reading (cm) time base (s / cm)
f = 1 / T
Explanation:
An oscilloscope is a piece of equipment that allows you to visualize and measure a wave that reaches you, in the case of having a sonometer this transforms the sound wave into an electrical signal to be introduced through one of the voltage channels of the equipment, on the screen we will see the oscillating alternating signal, if it is fixed we can make the reading, if it is moving the time base and the trigger must be adjusted to stop it.
In the oscilloscope we can read the period of the signal, this is the time it takes for the signal to repeat itself with this value, we can calculate the frequency with the formula, for the reading of the period the distance is measured on the labeled screen and multiplied by the time base
T = reading (cm) time base (s / cm)
f = 1 / T
According to the Law of Universal Gravitation, the gravitational force is directly proportional to the mass, and inversely proportional to the distance. In this problem, let's assume the celestial bodies to be restricted to the planets and the Sun. Since the distance is specified, the other factor would be the mass. Among all the celestial bodies, the Sun is the most massive. So, the Sun would cause the strongest gravitational pull to the satellite.