The position-time graphs show the relationship between the position of an object (shown on the y-axis) and the time (shown on the x-axis) to show velocity.
<h3>What is velocity?</h3>
Velocity is a vector quantity that tells the distance an object has traveled over a period of time.
Displacement is a vector quality showing total length of an area traveled by a particular object.
Imagine a time-position graph where the velocity of an object is constant. What will be observed on the graph concerning the slope of the line segment as well as the velocity of the object?
The slope of the line is equal to zero and the object will be stationary.
The position-time graphs show the relationship between the position of an object (shown on the y-axis) and the time (shown on the x-axis) to show velocity.
To learn more about velocity refer to the link
brainly.com/question/18084516
#SPJ2
Let's start with the concept of momentum. What is it? Linear momentum in physics is mathematically written as a product of mass and velocity of an object. Now let us suppose a body of mass m is moving in an inertial frame of reference with velocity v. Consider the fact that no external force is acting on the system. The momentum of this body is given by mv, where m is the mass and v is its velocity. In case of simple real world problems not delving into the realms of relativity, mass is a conserved quantity and it cannot be zero. Hence the velocity of the body must be zero and hence the momentum.
However, photons are considered to have a rest mass zero.
However note the point carefully "rest mass". A body in motion cannot have mass to be zero.
<em>-</em><em> </em><em>BRAINLIEST</em><em> answerer</em><em> ❤️</em>
A scientific law is the simple mathematical expression of the relationship involved. A principle is the same relationship expressed in words. A theory is the explanation of the facts that make up the relationship.
Answer:
The reading of the scale during the acceleration is 446.94 N
Explanation:
Given;
the reading of the scale when the elevator is at rest = your weight, w = 600 N
downward acceleration the elevator, a = 2.5 m/s²
The reading of the scale can be found by applying Newton's second law of motion;
the reading of the scale = net force acting on your body
R = mg + m(-a)
The negative sign indicates downward acceleration
R = m(g - a)
where;
R is the reading of the scale which is your apparent weight
m is the mass of your body
g is acceleration due to gravity, = 9.8 m/s²
m = w/g
m = 600 / 9.8
m = 61.225 kg
The reading of the scale is now calculated as;
R = m(g-a)
R = 61.225(9.8 - 2.5)
R = 446.94 N
Therefore, the reading of the scale during the acceleration is 446.94 N
I think it's surface tension force