Answer:
Explanation:
We want the energy required for the transition:
CO 2
(
s
)
+
Δ
→
C
O
2
(
g
)
Explanation:
We assume that the temperature of the gas and the solid are EQUAL.
And thus we simply have to work out the product:
2
×
10^
3
⋅
g
×
196.3
⋅
J
⋅
g
−
1 to get an answer in Joules as required.
What would be the energy change for the reverse transition:
C
O
2
(
g
)
+
→
C
O
2
(
s
)
?
Answer: when the temperature is increased, the number of collisions per second increases.
Explanation:
the rate of collisions and the temperature is directly proportional. If the energy of the gas particles is boosted by using the temperature, the chances of the particles bumping into each other due to the high energy increases, thus increasing the number of collisions. This also increases the rate of reaction. Thus when temperature is increased the number of collisions also increases.
Answer:
"Hydrogen is still available outside the core, so hydrogen fusion continues in a shell surrounding the core. The increasingly hot core also pushes the outer layers of the star outward, causing them to expand and cool, transforming the star into a red giant."
Answer:
2000pound
Explanation:
Manganese metal is produced from the manganese(III) oxide, Mn2O3, which is found in manganite, a manganese ore. The manganese is reduced from its +3 oxidation state in Mn2O3 to the zero oxidation state of the uncharged metal by reacting the Mn2O3 with a reducing agent such as aluminum or carbon. How many pounds of manganese are in 1.261 tons of Mn2O3? (1 ton = 2000 pounds)
About 40 different substances called organophosphorus compounds are registered in the United States as insecticides. They are considered less damaging to the environment than some other insecticides because they breakdown relatively rapidly in the environment. The first of these organophosphorus insecticides to be produced was tetraethyl pyrophosphate, TEPP, which is 33.11% carbon, 6.95% hydrogen, 38.59% oxygen, and 21.35% phosphorus. It has a molecular mass of 290.190.