<span>In the 19th century, scientists realized that gases in the atmosphere cause a "greenhouse effect" which affects the planet's temperature. These scientists were interested chiefly in the possibility that a lower level of carbon dioxide gas might explain the ice ages of the distant past. At the turn of the century, Svante Arrhenius calculated that emissions from human industry might someday bring a global warming. Other scientists dismissed his idea as faulty. In 1938, G.S. Callendar argued that the level of carbon dioxide was climbing and raising global temperature, but most scientists found his arguments implausible. It was almost by chance that a few researchers in the 1950s discovered that global warming truly was possible. In the early 1960s, C.D. Keeling measured the level of carbon dioxide in the atmosphere: it was rising fast. Researchers began to take an interest, struggling to understand how the level of carbon dioxide had changed in the past, and how the level was influenced by chemical and biological forces. They found that the gas plays a crucial role in climate change, so that the rising level could gravely affect our future. (This essay covers only developments relating directly to carbon dioxide, with a separate essay for Other Greenhouse Gases. Theories are discussed in the essay on Simple Models of Climate.)</span>
What's the problem ? Hardness is not the definition of a metal.
You need to expand your thinking. EVERY element is solid, liquid, and gas, over different ranges of temperature ... including all of the metals. There are only TWO elements that are liquid AT ROOM TEMPERATURE, and mercury is one of them. But on a mild day at the south pole, mercury is solid too.
The kind of reaction that occurs when you mix aqueous solutions of barium sulfide and sulfuric acid is a precipitation reaction.
<h3>Further Explanation</h3>
- The chemical reaction between Ba(OH)2(aq) and H2SO4(aq) is given by;
Ba(OH)₂(aq) + H₂SO4(aq) --> BaSO₄(aq) + 2H₂O(l)
- This is a type of precipitation reaction, where a precipitate is formed after the reaction, that is Barium sulfate.
<h3>Other types of reaction</h3><h3>Neutralization reactions </h3>
- These are reactions that involve reacting acids and bases or alkali to form salt and water as the only products.
- For example a reaction between sodium hydroxide and sulfuric acid.
NaOH(aq) + H₂SO₄(aq) → Na₂SO₄(aq) + H₂O(l)
<h3>Displacement reactions</h3>
- These are reactions in which a more reactive atom or ion displaces a less reactive ion from its salt.
Mg(s) + CuSO₄(aq) → MgSO₄(aq) + Cu(s)
<h3>Redox reactions </h3>
- These are reactions that involve both reduction and oxidation occuring simultaneously durin a chemical reaction.
- For example,
Mg(s) + CuSO₄(aq) → MgSO₄(aq) + Cu(s)
- Magnesium atom undergoes oxidation while copper ions undergoes reduction.
<h3>Decomposition reactions</h3>
- These are type of reactions that involves breakdown of a compound into its constituents elements.
- For example decomposition of lead nitrate.
Pb(NO3)2(S) → PbO(s) + O2(g) + NO2(g)
Keywords: Precipitation
<h3>Learn more about: </h3>
Level: High school
Subject: Chemistry
Topic: Chemical reactions
Sub-topic: Precipitation reactions
<h3>Types of Osmosis</h3>
Osmosis is of two types:
Endosmosis– When a substance is placed in a hypotonic solution, the solvent molecules move inside the cell and the cell becomes turgid or undergoes deplasmolysis. This is known as endosmosis.
Exosmosis– When a substance is placed in a hypertonic solution, the solvent molecules move outside the cell and the cell becomes flaccid or undergoes plasmolysis. This is known as exosmosis.
Answer: Earth's climate has fluctuated through deep time, pushed by these 10 ... How Earth's Climate Changes Naturally (and Why Things Are Different Now) ... So if the climate changed before humans, how can we be sure we're ... can be disruptive, but in the grand scale of Earth's history it's tiny and temporary
Explanation: