Zinc chloride and aluminum
The given question is incomplete. The complete question is:
Calculate the number of moles and the mass of the solute in each of the following solution: 100.0 mL of 3.8 × 10−5 M NaCN, the minimum lethal concentration of sodium cyanide in blood serum
Answer: The number of moles and the mass of the solute are
and
respectively
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per liter of the solution.

where,
n = moles of solute
= volume of solution in ml


n = moles of
= 


Thus the number of moles and the mass of the solute are
and
respectively
Answer:
Volume of container = 0.0012 m³ or 1.2 L or 1200 ml
Explanation:
Volume of butane = 5.0 ml
density = 0.60 g/ml
Room temperature (T) = 293.15 K
Normal pressure (P) = 1 atm = 101,325 pa
Ideal gas constant (R) = 8.3145 J/mole.K)
volume of container V = ?
Solution
To find out the volume of container we use ideal gas equation
PV = nRT
P = pressure
V = volume
n = number of moles
R = gas constant
T = temperature
First we find out number of moles
<em>As Mass = density × volume</em>
mass of butane = 0.60 g/ml ×5.0 ml
mass of butane = 3 g
now find out number of moles (n)
n = mass / molar mass
n = 3 g / 58.12 g/mol
n = 0.05 mol
Now put all values in ideal gas equation
<em>PV = nRt</em>
<em>V = nRT/P</em>
V = (0.05 mol × 8.3145 J/mol.K × 293.15 K) ÷ 101,325 pa
V = 121.87 ÷ 101,325 pa
V = 0.0012 m³ OR 1.2 L OR 1200 ml
3 CuSO4(aq)+2Al(s) -->Al2(SO4)3(aq)+Cu(s) is a
balanced equation for Copper (II) sulfate + aluminum --> aluminum
sulfate+solid copper. The correct answer between all the choices
given is the second choice or letter B. I am hoping that this answer has
satisfied your query and it will be able to help you in your endeavor, and if
you would like, feel free to ask another question.
0.01631973355 is your answer. Have a great day and hope this helps!!!