Answer: The correct answer is: [B]:
_________________________________________________
" organic acid and amines " .
_________________________________________________
<u>Note</u>: Choice B: "organic acid and amines" ;
is the only answer choice that contains "amines" (hint: <u> amin</u><u>o acid</u> / <u>amin</u><u>e)</u> ; which are "proteins" .
As such; Choice "B" is the <u><em>only</em></u> correct answer choice.
_____________________________________________________
Hope this helps!
Best wishes to you!
_____________________________________________________
Answer:
Pottasium reacts with water vigorously and the reation is exothermic. The heat released causes the hydrogen released to ignite
Explanation:
Answer:
150ml
Explanation:
For this question,
NaOH completely dissociates. It is a strong base
HCl also completely dissociates. It is a strong acid
So we have this equation
m1v1 = m2v2 ----> equation 1
M2 = 2m
V1= ??
M2 = 6m
V2 = 50m
When we input these into equation 1, we have:
2m x v1 = 6m x 50ml
V1 = 6m x 50ml/2
V1 = 300/2
V1 = 150ml
Therefore NaOH that is required to neutralize the solution of hydrochloric acid is 150ml.
Thank you
The normal range of creatinine in human blood is between 0.50 mg/dL and 1.1 mg/dL. The patient's blood has a concentration of 0.0082 g/L. Let's convert that value into mg/dL.
We kwnot that there are 1000 mg in 1 g. And there are 10 dL in 1 L. We have to use those conversions.
1000 mg = 1 g 10 dL = 1 L
0.0082 g/L = 0.0082 g/L * 1000 mg/g = 8.2 mg/L * 1 L/ (10 dL) = 0.82 mg/dL
0.0082 g/L = 0.82 mg/dL
0.50 mg/dL < 0.82 mg/dL < 1.1 mg/dL
Answer: The concentration of creatinine = 0.82 mg/dL. It is in the normal range.
The first thing we need to do here is to recognize the unit of molarity and the units of the given percentage of nitric acid.
Molarity is mol HNO3 / L of solution. This is our aim
The given percentage is 0.68 g HNO3/ g solution
multiplying this with density to convert g solution into mL solution and dividing with the molecular weight of HNO3 (63 g/mol) to convert g HNO3 to mol. Therefore we obtain
0.016 mol/ mL or 16.23 mol/ L (M)