Answer:
A medium.
<h3>Explanation:</h3>
It's the material the wave is travelling through.
Answer:
54 days
Explanation:
We have to use the formula;
0.693/t1/2 =2.303/t log Ao/A
Where;
t1/2= half-life of phosphorus-32= 14.3 days
t= time taken for the activity to fall to 7.34% of its original value
Ao=initial activity of phosphorus-32
A= activity of phosphorus-32 after a time t
Note that;
A=0.0734Ao (the activity of the sample decreased to 7.34% of the activity of the original sample)
Substituting values;
0.693/14.3 = 2.303/t log Ao/0.0734Ao
0.693/14.3 = 2.303/t log 1/0.0734
0.693/14.3 = 2.6/t
0.048=2.6/t
t= 2.6/0.048
t= 54 days
Answer:
C. to explore the composition of Mars
Explanation:
Initially, in 2019, an unmanned mission is planned to orbit the moon. The spacecraft would flyby the moon. In 2020's, the Exploration Mission 2 would be a manned mission on the same path around the moon. This would be the base for future goal of collecting samples from mars. In later of 2020's unmanned spacecraft would be sent to mars and a robot would collect the samples from the Martian surface. In 2030's, a crew would be sent to Mars.
Answer:
81.5 L
Explanation:
We can use the combined gas law equation that gives the relationship among pressure, temperature and volume of gases for a fixed amount of gas.
P1V1 / T1 = P2V2 / T2
where P1 - pressure, V1 - volume and T1 - temperature at the first instance
P2 - pressure, V2 - volume and T2 - temperature at the second instance
substituting the values in the equation
1240 Torr x 47.2 L / 298 K = 730 Torr x V2 / 303 K
V2 = 81.5 L
the new volume the gas would occupy when the conditions have changed is 81.5 L