Average speed= total distance/total time =12km/h
<u>Note that</u>:
The gravitational potential energy = 
where m: is the mass, g: the acceleration due to the gravity and h is the height from the earth surface
Then, we can increase the gravitational potential energy by increasing the mass or the height from the earth surface
<u>In our question</u>, we can increase the gravitational potential energy by
<u>A) Strap a boulder to the car so that it wights more.</u>
Answer : The final temperature is, 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of ice = 
= specific heat of water = 
= mass of ice = 50 g
= mass of water = 200 g
= final temperature = ?
= initial temperature of ice = 
= initial temperature of water = 
Now put all the given values in the above formula, we get:


Therefore, the final temperature is, 
Answer:
- No, this doesn't mean the electric potential equals zero.
Explanation:
In electrostatics, the electric field
is related to the gradient of the electric potential V with :

This means that for constant electric potential the electric field must be zero:





This is not the only case in which we would find an zero electric field, as, any scalar field with gradient zero will give an zero electric field. For example:

give an electric field of zero at point (0,0,0)
Water is a very unique substance because it can exist in all three phases of matter (solid, liquid, gas) within the normal temperature ranges found on Earth. When one observes the phase of matter of water, one observes a property of matter.