Answer:

Explanation:
<h3><u>Given data:</u></h3>
Acceleration = a = 0.4 m/s²
Initial Speed =
= 20 m/s
Final Speed =
= 40 m/s
<h3><u>Required:</u></h3>
Time = t = ?
<h3><u>Formula:</u></h3>

<h3><u>Solution:</u></h3>
Rearranging formula for t
![\displaystyle t =\frac{V_f-V_i}{a} \\\\t = \frac{40-20}{0.4} \\\\t = \frac{20}{0.4} \\\\\boxed{t = 50 \ seconds}\\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20t%20%3D%5Cfrac%7BV_f-V_i%7D%7Ba%7D%20%5C%5C%5C%5Ct%20%3D%20%5Cfrac%7B40-20%7D%7B0.4%7D%20%5C%5C%5C%5Ct%20%3D%20%5Cfrac%7B20%7D%7B0.4%7D%20%5C%5C%5C%5C%5Cboxed%7Bt%20%3D%2050%20%5C%20seconds%7D%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
To measure the density of the stone placed in a graduated cylinder let us follow these steps bellow
- Measure the volume of water poured into a graduated cylinder
- Place the object in the water and remeasure the volume.
- The difference between the two volume measurements is the volume of the object.
- Divide the mass by the volume to calculate the density of the object.
<em>We know that the formula for density is given as </em>
Given data
Mass = 8gram
Initial Volume of water in cylinder = 25mL
Final Volume of water in cylinder = 29mL
Hence the volume of the rock = 29-25 = 4mL
Therefore the density of the rock = 8/4 = 2 g/mL
Learn more:
brainly.com/question/17336041
Answer:
Even ur best Friend Can you to have red flag feeling