Answer:
3.64g
Explanation:
Given parameters:
Mass of NH₃ = 18.1g
Mass of Cu₂O = 90.4g
Unknown:
Limiting reactant = ?
Mass of N₂ formed = ?
Solution:
The reaction equation is given as:
Cu₂O + 2NH₃ → 6Cu + N₂ + 3H₂O
The limiting reactant is the one in short supply in the reaction. Let us find the number of moles of the given species;
Number of moles =
Molar mass of Cu₂O = 2(63.6) + 16 = 143.2g/mol
Molar mass of NH₃ = 14 + 3(1) = 17g/mol
Number of moles of Cu₂O =
= 0.13moles
Number of moles of NH₃ =
= 5.32moles
From this reaction;
1 mole of Cu₂O combines with 2 mole of NH₃
So 0.13moles of Cu₂O will combine with 0.13 x 2 mole of NH₃
= 0.26moles of NH₃
Therefore, Cu₂O is the limiting reactant. Ammonia is in excess;
Mass of N₂;
Mass = number of moles x molar mass
1 mole of Cu₂O will produce 1 mole of N₂
0.13 mole of Cu₂O will produce 0.13 mole of N₂
Mass = 0.13 x (2 x 14) = 3.64g
While metallic bonds have the strong electrostatic force of attractions between the cation or atoms and the delocalized electrons in the geometrical arrangement of the two metals. ... Metallic bonds are malleable and ductile, while covalent bonds and ionic bonds non-malleable and non-ductile.
It will explode together cause danger
I take that the insects remain constant no matter what happens to the frogs (which the frogs eat presumably). So a constant food supply for the frogs is not the problem.
The line for the alligators increases over time. It their numbers increase, the frogs are in trouble. The alligators will pursue lunch with determined single mindedness and there are more of them around.
So the frogs should decrease. Their natural enemy is the alligator and alligators won't go after insects. It's not worth their time.
A is the only answer you can choose.
Answer:
You have got the Combined Gas Equation for an Ideal Gas, which holds that
P
1
V
1
T
1
=
P
2
V
2
T
2
V
2
=
P
1
×
V
1
×
T
2
T
1
×
P
2
...
Explanation: