Answer:
As you move from left to right, the nucleus gains protons. This increases the positive charge of the nucleus and its attractive force on the electrons. At the same time, electrons are added to the atoms as you move from left to right across a period.
Explanation:
The correct answer is<span> C) Water takes long to heat and cool down than other liquids.
It doesn't climb up the sides of a tube any more than other solutions do, and being a universal solvent has nothing to do with radiators. It does however take a long time to heat and cool down since you don't have a 100+ celsius burner to heat it up in an instant.</span>
Glyphosphate stops the production of amino acids which prevents the ribosomes from making proteins
Answer:
<h3>1. 10 e⁻</h3>
Oxidation numbers
I₂O₅(s): I (5+); O(2-)
CO(g): C(2+); O(2-)
I₂(s): I(0)
CO₂(g): C(4+); O(2-)
<h3>2. 4 e⁻</h3>
Oxidation numbers
Hg²⁺(aq): Hg(2+)
N₂H₄(aq): N(2-); H(1+)
Hg(l): Hg(0)
N₂(g): N(0)
H⁺(aq): H(1+)
<h3>3. 6 e⁻</h3>
Oxidation numbers
H₂S(aq): H(1+); S(2-)
H⁺(aq): H(1+)
NO₃⁻(aq): N(5+); O(2-)
S(s): S(0)
NO(g): N(2+); O(2-)
H₂O(l): H(1+); O(2-)
Explanation:
In order to state the total number of electrons transferred we have to identify both half-reactions for each redox reaction.
1. I₂O₅(s) + 5 CO(g) → I₂(s) + 5 CO₂(g)
Oxidation: 10 e⁻ + 10 H⁺(aq) + I₂O₅(s) → I₂(s) + 5 H₂O(l)
Reduction: 5 H₂O(l) + 5 CO(g) → 5 CO₂(g) + 10 H⁺(aq) + 10 e⁻
2. 2 Hg²⁺(aq) + N₂H₄(aq) → 2 Hg(l) + N₂(g) + 4 H⁺(aq)
Oxidation: N₂H₄(aq) → N₂(g) + 4 H⁺(aq) + 4 e⁻
Reduction: 2 Hg²⁺(aq) + 4 e⁻ → 2 Hg(l)
3. 3 H₂S(aq) + 2H⁺(aq) + 2 NO₃⁻(aq) → 3 S(s) + 2 NO(g) + 4H₂O(l)
Oxidation: 3 H₂S(aq) → 3 S(s) + 6 H⁺(aq) + 6 e⁻
Reduction: 8 H⁺(aq) + 2 NO₃⁻(aq) + 6 e⁻ → 2 NO(g) + 4 H₂O