Start with Unbalanced Equation and balance it, so...
C7H16+O2--->CO2+H2O
There are 7 C atoms on the left-hand side, so we need 7 C atoms on the right-hand side. Add a 7 in front of the CO2...7CO2+H2O on right side now.
We have fixed 16 H atoms on the left-hand side, so we need 16 H atoms on the right-hand side. Add an 8 in front of H2O to make 16 (8x2)...7CO2+8H2O on right side now.
There are 22 O atoms on the right-hand side: 14 from the CO2 and 8 from the H2O. Add an 11 in front of the O2 on the left side to make 22 (11x2).
Every formula now has a fixed coefficient. You should have a balanced equation of...
C7H16+11O2--->7CO2+8H2O
Answer:
Yes.
Explanation:
Wasting household water does not ultimately remove that water from the global water cycle, but it does remove it from the portion of the water cycle that is readily accessible and usable by humans. Also, "wasting" water wastes the energy and resources that were used to process and deliver the water.
Answer: definite proportions.
Explanation:
1) The definite proportions law states that compounds will always have the same kind of atoms (elements) in the same mass proportion (ratios).
2) For example, a molecule of water will alwys have the same mass ratio of hydrogen atoms to oxygen atoms. That is what permits to obtain the chemical formula of the water molecule as H₂O.
The mass of the two hydrogen atoms will be in a fixed ratio respect to the mass of the oxygen atoms.
Then, if you have one reactant in less proportion than the other, respect to the ratio stated by the chemical formula of water, the former will react completely (it is the limiting reactant) with the corresponding (proportional) mass of the later. Then there will be an excess of the later reactant which will not react (will remain unchanged).
The reactants can only react in the proportion defined by the chemical formulas of the final products.
Answer:
<h2>1.89 atm</h2>
Explanation:
The new volume can be found by using the formula for Boyle's law which is

Since we are finding the new volume

From the question we have

We have the final answer as
<h3>1.89 atm</h3>
Hope this helps you
Answer:
The attractive force between them decreases
Explanation:
This is because they become localised.