Methylbut-2-ene undergoes asymmetric electrophilic addition with hydrogen bromide to produce two products:
, 2-bromo-<em>2</em>-methylbutane;
, 2-bromo-<em>1</em>-methylbutane.
It is expected that
would end up being the dominant product.
Explanation
Molecules of methylbut-2-ene contains regions of high electron density at the pi-bonds. Those bonds would attract hydrogen atoms with a partial positive charge in polar hydrogen bromide molecules and could occasionally induce heterolytic fission of the hydrogen-bromide bond to produce positively-charged hydrogen ions
and negatively-charged bromide ions
.

The positively-charged hydrogen ion would then attack the methylbut-2-ene to attach itself to one of the two double-bond-forming carbon atoms. It would break the pi bond (but not the sigma bond) to produce a carbo<em>cation</em> with the positive charge centered on the carbon atom on the other end of the used-to-be double bond. The presence of the methyl group introduces asymmetry to the molecule, such that the two possible carbocation configurations are structurally distinct:
;
.
The carbocations are of different stabilities. Electrons in carbon-carbon bonds connected to the positively-charged carbon atom shift toward the electron-deficient atom and help increase the structural stability of the molecule. The electron-deficient carbon atom in the first carbocation intermediate shown in the list has <em>three</em> carbon-carbon single bonds after the addition of the proton
as opposed to <em>two</em> as in the second carbocation. The first carbocation- a "tertiary" carbocation- would thus be more stable, takes less energy to produce, and has a higher chance of appearance than its secondary counterpart. The polar solvent dichloromethane would further contribute to the stability of the carbocations through dipole-dipole interactions.
Both carbocations would then combine with bromide ions to produce a neutral halocarbon.
The position of bromine ions in the resultant halocarbon would be dependent on the center of the positive charge in the carbocation. One would thus expect 2-bromo-<em>2</em>-methylbutane, stemming from the first carbocation which has the greatest abundance in the solution among the two, to be the dominant product of the overall reaction.
It's because every living cells do respiration. Respiration basically involves the oxidation of food(carbohydrate) to generate energy in form of ATP.
Answer:
The amount of mass and matter in all the transformations of the clay ball will remain the same or constant
Explanation:
From the law of conservation of mass we have, for an enclosed system to and from which there is no transfer of matter or energy, mass cannot be created nor destroyed, and remains constant at the given value, but the matter which make up the mass can be changed into different forms
Therefore, the clay ball can be transformed into different shapes and will still posses the same initial mass before the transformation, provided there are no transfer of matter or energy from the clay ball system.
Explanation:
It's so because we know that stone is insoluble, ain't it, so it takes space in water & the water level rises.
But, when a spoon of sugar is added to water, it is soluble & hence mixes with water, so it doesn't rise.
I Hope this helps! (ㆁωㆁ)
Answer:
reflection
Explanation:
the moon reflects sunlight causing it to look brighter. the sun is not a medium as light doesn't require a. medium to travel. nor is a moon concave...
hope it helps