Answer: The five major fields of environmental science are social sciences, geosciences, environmental chemistry, ecology, and atmospheric sciences.
Explanation:
Answer:
Yes, if the system has friction, the final result is affected by the loss of energy.
Explanation:
The result that you are showing is the conservation of mechanical energy between two points in the upper one, the energy is only potential and the lower one is only kinetic.
In the case of some type of friction, the change in energy between the same points is equal to the work of the friction forces
= ΔEm
=
-Em₀
As we can see now there is another quantity and for which the final energy is lower and therefore the final speed would be less than what you found in the case without friction.
=
+ Em₀
Remember that the work of the rubbing force is negative, let's write the work of the rubbing force explicitly, to make it clearer
½ m v² = -fr d + mgh
v = √(-fr d 2/m + 2 gh)
v = √ (2gh - 2fr d/m)
Now it is clear that there is a decrease in the final body speed.
Consequently, if the system has friction, the final result is affected by the loss of energy.
By definition we have that the final speed is:
Vf² = Vo² + 2 * a * d
Where,
Vo: Final speed
a: acceleration
d: distance.
We cleared this expression the acceleration:
a = (Vf²-Vo²) / (2 * d)
Substituting the values:
a = ((0) ^ 2- (60) ^ 2) / ((2) * (123) * (1/5280))
a = -77268 mi / h ^ 2
its stopping distance on a roadway sloping downward at an angle of 17.0 ° is:
First you must make a free body diagram and see the acceleration of the car:
g = 32.2 feet / sec ^ 2
a = -77268 (mi / h ^ 2) * (5280/1) (feet / mi) * (1/3600) ^ 2 (h / s) ^ 2
a = -31.48 feet / sec ^ 2
A = a + g * sin (θ) = -31.48 + 32.2 * sin17.0
A = -22.07 feet / sec ^ 2
Clearing the braking distance:
Vf² = Vo² + 2 * a * d
d = (Vf²-Vo²) / (2 * a)
Substituting the values:
d = ((0) ^ 2- (60 * (5280/3600)) ^ 2) / (2 * (- 22.07))
d = 175.44 feet
answer:
its stopping distance on a roadway sloping downward at an angle of 17.0 ° is 175.44 feet
Answer:
20.60 kV
Explanation:
Capacitance of parallel plates without dielectric between them is:

with d the distance between the plates, A the area of the plates and ε₀ the constant
, so :

But the dielectric constant is defined as:

With C the effective capacitance (with the dielectric) and Co the original capacitance (without the dielectric). So, the new capacitance is:

But capacitance is related with voltage by:

with Q the charge and V the voltage, using the new capacitance and solving for V:


Answer:c
Explanation:
When the direction of current is towards the observer then the magnetic field around it will be in the form of concentric circles and its direction will be anti-clockwise when viewed from the observer side.
Whenever current is flowing in a current-carrying conductor then the magnetic field is associated with it and direction of the magnetic field is given by right-hand thumb rule according to which if thumb represents the direction of current then wrapping of fingers will give the direction of the magnetic field