Answer:
The rock's final speed at the required altitude will be 42.24 m/s.
Explanation:
Let's start by finding the initial vertical speed.
Vertical Speed = 1.61 * Sin (53.2°)
Vertical Speed = 0.8 m/s
We want to know the speed of the rock when it is at an altitude of 91 km.
The total displacement of the rock from its starting position will thus be equal to -91 km
We can use this in the following equation:


t = 4.3918 seconds
Thus it takes 4.3918 seconds to reach the required altitude. We can now find the speed as follows:



Thus the rock's final speed at the required altitude will be 42.24 m/s.
(a) The plane makes 4.3 revolutions per minute, so it makes a single revolution in
(1 min) / (4.3 rev) ≈ 0.2326 min ≈ 13.95 s ≈ 14 s
(b) The plane completes 1 revolution in about 14 s, so that in this time it travels a distance equal to the circumference of the path:
(2<em>π</em> (23 m)) / (14 s) ≈ 10.3568 m/s ≈ 10 m/s
(c) The plane accelerates toward the center of the path with magnitude
<em>a</em> = (10 m/s)² / (23 m) ≈ 4.6636 m/s² ≈ 4.7 m/s²
(d) By Newton's second law, the tension in the line is
<em>F</em> = (1.3 kg) (4.7 m/s²) ≈ 6.0627 N ≈ 6.1 N
The best way to increase the accuracy of a scientific experiment is to have a detailed plan of action for conducting the experiment. You should also repeat the experiment several times to ensure that you get the same result(s) consistently.<span />
Answer:
You will hear the note E₆
Explanation:
We know that:
Your speed = 88m/s
Original frequency = 1,046 Hz
Sound speed = 340 m/s
The Doppler effect says that:

Where:
f = original frequency
f' = new frequency
v = velocity of the sound wave
v0 = your velocity
vs = velocity of the source, in this case, the source is the diva, we assume that she does not move, so vs = 0.
Replacing the values that we know in the equation we have:

This frequency is close to the note E₆ (1,318.5 Hz)