Answer:
= 9.8°
Explanation:
Width of one slit (a₁ ) = 1 / 1000 mm=0.001 mm = 10⁻⁶ m.
width of one slit in case 2 (a₂ ) = 1/500 =2 x 10⁻⁶ m
angular position of fringe, Sinθ = n λ /a
n is order of fringe , λ is wave length of light and a is slit aperture
So Sinθ ∝ 1 / a
Sin θ₁ /Sin θ₂ = a₂/a₁ ;
Sin20°/sinθ₂ = 2 / 1
sinθ₂ = Sin 20° / 2 = .342/2 = .171
θ₂ = 9.8 °
The magnetic part using the Lorentz force is: F = q v x
B,
where v and B are vectors and v x B is the vector cross product.
Magnitude of the force: F = q v B sin(α)
So, sin(α) = F/( e v B), with e the proton charge.
This will give you a value for sin(α), and two potentials
for its opposite.
You will now look for:
sin(α) = 7.40 10^-13/( 1.60 10^-19 * 5 10^6 * 1.78)
= 0.520
So either sin(α) = 0.502 or sin(α) = -0.502
The 1st α = 30.1 degrees or α = 150 degrees.
The 2nd α = 210 degrees or α = 330 degrees.
So we can say that 30.1 degrees and 330 degrees would be minimum and biggest on [0,360]
C. Volcanoes above subduction zones have lava that is not basaltic.
The correct answer to the question above is the capture theory. The capture theory proposes that the moon was a passing asteroid pulled into the orbit by the Earth's gravity. It says that the moon was originally orbiting the sun, not the Earth.
The answer is 34 you have to add the numbers and divide them by how many numbers there are