Answer:
induced electromotive force (Voltage) E = - N dΦ / dt
Explanation:
When the magnetic flux this coil induces a current in each turn of the coil, which is why an induced electromotive force (Voltage) appears at the ends of the coil.
This phenomenon is fully explained by Faraday's law
E = - dΦ / dt
where in the case of a coil with N turns of has
E = - N dΦ / dt
Rl flux is the product of the normal to the area by the magnetic field, in this case the flux changes so we can assume that the area of the coil is constant
It depends on how much time 45 j will go, so if you told me that it went through 45 j per minute it will go through for 2 minutes so not efficient unless it went through 45 j per hour then it is efficient.
Best Answer: perpendicular to the direction of wave motion
think of you and a friend holding different ends of a rope. you shake your end side to side and the wave travels down to your friend's end. if you pay attention to a given segment of the rope, it moves, but it moves to the right and left while the wave travels forward. in a transverse wave, the constituents of the wave move perpendicular to the direction of motion of the wave itself.
a longitudinal wave, on the other hand, is the opposite. the constituents of the wave alternate moving in the same or opposite direction as the wave moves. this one is more like if you and your friend were holding onto a slinky. you give your end a push towards your friend, and you can see the wave move towards the other end.
hope that helps :D
Answer: 12) 1.07 m/s (right) 13) 4.05 m/s 14) 73 m/s 15) 10.9 m/s
Explanation:
12) Conservation of momentum. Momentum is the produce of mass and velocity.
13(2) + 15(-5) = 13(-5) + 15v
v = 1.06666... ≈ 1.07 m/s (right)
13) 18(9) + 22(0) = 18v + 22v
v = 18(9)/40 = 4.05 m/s
14) 0.65(35) + 0.08(0) = 0.65(26) + 0.08v
v = 73.125
15) This is a bit trickier. Let's ASSUME you jump off at 7 m/s relative to the truck. Doing this, we can assume that the reference frame is moving along with the truck at 10 m/s
the conservation of momentum equation becomes
600(0) + 80(0) = 600v + 80(-7)
v = 0.9333333... m/s
adding back the velocity of the reference frame means the truck is now traveling.
10.9333333... ≈ 10.9 m/s