Half life is the time that it takes for half of the original value of some amount of a radioactive element to decay.
We have the following equation representing the half-life decay:

A is the resulting amount after t time
Ao is the initial amount = 50 mg
t= Elapsed time
t half is the half-life of the substance = 14.3 days
We replace the know values into the equation to have an exponential decay function for a 50mg sample

That would be the answer for a)
To know the P-32 remaining after 84 days we have to replace this value in the equation:

So, after 84 days the P-32 remaining will be 0.85 mg
Acid A, assuming the two acids have the same pH. The M stands for molarity which is how concentrated a substance is (basically the higher the molarity the more concentrated the acid is). However, pH refers to how acidic a substance is. If the two acids have different levels of acidity, the answer may be different.
Answer:
When an electron is hit by a photon of light, it absorbs the quanta of energy the photon was carrying and moves to a higher energy state. One way of thinking about this higher energy state is to imagine that the electron is now moving faster, (it has just been "hit" by a rapidly moving photon).
Explanation: pls mark brainliest :))
It is elastic potential energy
In nature there are many more variations amino acids than the simple 20 found in humans. However, when analyzing the human genome sequence, there is a code for all 64 permutations (4^3), only some of them share amino acids. This is a safe-guard against mutations of one or two nucleotides. For example, the amino acid Alanine is coded with four different nucleotide sequences: GCA, GCC, GCG, GCU. Also some amino acids code the same like UUU &UUC