Answer : The final velocity of the ball is, 12.03 m/s
Explanation :
By the 3rd equation of motion,

where,
s = distance covered by the object = 6.93 m
u = initial velocity = 2.99 m/s
v = final velocity = ?
a = acceleration = 
Now put all the given values in the above equation, we get the final velocity of the ball.


Thus, the final velocity of the ball is, 12.03 m/s
Answer:
The molecular weight will be "28.12 g/mol".
Explanation:
The given values are:
Pressure,
P = 10 atm
= 
=
Temperature,
T = 298 K
Mass,
m = 11.5 Kg
Volume,
V = 1000 r
= 
R = 8.3145 J/mol K
Now,
By using the ideal gas law, we get
⇒ 
o,
⇒ 
By substituting the values, we get


As we know,
⇒ 
or,
⇒


Answer: a) 135642 b) 146253
Explanation:
A)
1- the bankers algorithm tests for safety by simulating the allocation for predetermined maximum possible amounts of all resources, as stated this has the greatest degree of concurrency.
3- reserving all resources in advance helps would happen most likely if the algorithm has been used.
5- Resource ordering comes first before detection of any deadlock
6- Thread action would be rolled back much easily of Resource ordering precedes.
4- restart thread and release all resources if thread needs to wait, this should surely happen before killing the thread
2- only option practicable after thread has been killed.
Bii) ; No. Even if deadlock happens rapidly, the safest sequence have been decided already.
Answer:
b. 1232.08 km/hr
c. 1.02 kn
Explanation:
a) For dynamic similar conditions, the non-dimensional terms R/ρ V2 L2 and ρVL/ μ should be same for both prototype and its model. For these non-dimensional terms , R is drag force, V is velocity in m/s, μ is dynamic viscosity, ρ is density and L is length parameter.
See attachment for the remaining.