1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tigry1 [53]
3 years ago
7

This test should be performed on all cord sets, receptacles that aren't part of a building or structure's permanent wiring, and

cord-and-plug connected equipment required to be grounded. The point of this test is to make sure that the equipment grounding conductor is electrically continuous
Engineering
1 answer:
vova2212 [387]3 years ago
8 0

Answer:

A continuity test

Explanation:

A continuity test is used to verified that current will flow in an electrical circuit, it performed by placing a small voltage across the chosen path. continuity test ensure that the equipment grounding conductor is electrically continuous and this test is perform on all the cord sets, receptacles that aren't part of a building or structure's permanent wiring, and cord-and-plug connected equipment required to be grounded. example of equipment used in testing current flow in continuity test are Analog multi-meter, voltage/continuity tester etc.

Continuity test and terminal connection test are the two test required by OSHA on all electrical equipment

You might be interested in
Estimate the quantity of soil to be excavated from the borrow pit​
Serggg [28]

Answer

1056

Explanation:

for example

A soil is to be excavated from a borrow pit which has a density of 1.75g/cc and water content of 12%. The G is 2.7 the soil is compacted to that water content of 18% and dry density of 1.65g/cc. for 1000 m3 of soil used in fill estimate

Quantity of soil to be excavated from pit in m3

6 0
2 years ago
-0-1"<br> -0<br> -20<br> -15<br> -10<br> 0<br> -5
kari74 [83]

Answer:

what

Explanation:

what is that

3 0
3 years ago
For a certain gas, Cp = 840.4 J/kg-K; and Cv = 651.5 J/kg-K. How fast will sound travel in this gas if it is at an adiabatic sta
Crank

Answer:

The speed of the sound for the adiabatic gas is 313 m/s

Explanation:

For adiabatic state gas, the speed of the sound c is calculated by the following expression:

c=\sqrt(\gamma*R*T)

Where R is the gas's particular constant defined in terms of Cp and Cv:

R=Cp-Cv

For particular values given:

R=840.4 \frac{J}{Kg-K}- 651.5 \frac{J}{Kg-K}

R=188.9 \frac{J}{Kg-K}

The gamma undimensional constant is also expressed as a function of Cv and Cp:

\gamma=Cp/Cv

\gamma=840.4 \frac{J}{Kg-K} / 651.5 \frac{J}{Kg-K}

\gamma=1.29

And the variable T is the temperature in Kelvin. Thus for the known temperature:

c=\sqrt(1.29*188.9 \frac{J}{Kg-K}*377 K)

c=\sqrt(91867.73 \frac{J}{Kg})

The Jules unit can expressing by:

J=N.m=\frac{Kg.m}{s^2}* m

J=\frac{Kg.m^2}{s^2}

Replacing the new units for the speed of the sound:

c=\sqrt(91867.73 \frac{Kg.m^2}{Kg.s^2})

c=\sqrt(91867.73 \frac{m^2}{s^2})

c=313 m/s

3 0
3 years ago
Read 2 more answers
A charge of +2.00 μC is at the origin and a charge of –3.00 μC is on the y axis at y = 40.0 cm . (a) What is the potential at po
Nimfa-mama [501]

a) Potential in A: -2700 V

b) Potential difference: -26,800 V

c) Work: 4.3\cdot 10^{-15} J

Explanation:

a)

The electric potential at a distance r from a single-point charge is given by:

V(r)=\frac{kq}{r}

where

k=8.99\cdot 10^9 Nm^{-2}C^{-2} is the Coulomb's constant

q is the charge

r is the distance from the charge

In this problem, we have a system of two charges, so the total potential at a certain point will be given by the algebraic sum of the two potentials.

Charge 1 is

q_1=+2.00\mu C=+2.00\cdot 10^{-6}C

and is located at the origin (x=0, y=0)

Charge 2 is

q_2=-3.00 \mu C=-3.00\cdot 10^{-6}C

and is located at (x=0, y = 0.40 m)

Point A is located at (x = 0.40 m, y = 0)

The distance of point A from charge 1 is

r_{1A}=0.40 m

So the potential due to charge 2 is

V_1=\frac{(8.99\cdot 10^9)(+2.00\cdot 10^{-6})}{0.40}=+4.50\cdot 10^4 V

The distance of point A from charge 2 is

r_{2A}=\sqrt{0.40^2+0.40^2}=0.566 m

So the potential due to charge 1 is

V_2=\frac{(8.99\cdot 10^9)(-3.00\cdot 10^{-6})}{0.566}=-4.77\cdot 10^4 V

Therefore, the net potential at point A is

V_A=V_1+V_2=+4.50\cdot 10^4 - 4.77\cdot 10^4=-2700 V

b)

Here we have to calculate the net potential at point B, located at

(x = 0.40 m, y = 0.30 m)

The distance of charge 1 from point B is

r_{1B}=\sqrt{(0.40)^2+(0.30)^2}=0.50 m

So the potential due to charge 1 at point B is

V_1=\frac{(8.99\cdot 10^9)(+2.00\cdot 10^{-6})}{0.50}=+3.60\cdot 10^4 V

The distance of charge 2 from point B is

r_{2B}=\sqrt{(0.40)^2+(0.40-0.30)^2}=0.412 m

So the potential due to charge 2 at point B is

V_2=\frac{(8.99\cdot 10^9)(-3.00\cdot 10^{-6})}{0.412}=-6.55\cdot 10^4 V

Therefore, the net potential at point B is

V_B=V_1+V_2=+3.60\cdot 10^4 -6.55\cdot 10^4 = -29,500 V

So the potential difference is

V_B-V_A=-29,500 V-(-2700 V)=-26,800 V

c)

The work required to move a charged particle across a potential difference is equal to its change of electric potential energy, and it is given by

W=q\Delta V

where

q is the charge of the particle

\Delta V is the potential difference

In this problem, we have:

q=-1.6\cdot 10^{-19}C is the charge of the electron

\Delta V=-26,800 V is the potential difference

Therefore, the work required on the electron is

W=(-1.6\cdot 10^{-19})(-26,800)=4.3\cdot 10^{-15} J

4 0
3 years ago
What is the composition, in atom percent, of an alloy that consists of 4.5 wt% Pb and 95.5 wt% Sn?
jeka57 [31]

Answer: Option A is correct -- 2.6 at% Pb and 97.4 at% Sn.

Explanation:

Option A is the only correct option -- 2.6 at% Pb and 97.4 at% Sn. While option B, which is 7.6 at% Pb and 92.4 at% Sn. and option C, which is 97.4 at% Pb and 2.6 at% Sn. and option D, which is 92.4 at% Pb and 7.6 at% Sn. are wrong.

6 0
3 years ago
Other questions:
  • Two kg of N2 at 450 K, 7 bar is contained in a rigid tank connected by a valve to another rigid tank holding 1 kg of O2 at 300 K
    13·1 answer
  • How do batteries and other types of power sources make physical computing systems more mobile?
    15·2 answers
  • Calculate the value of ni for gallium arsenide (GaAs) at T = 300 K. The constant B = 3. 56 times 1014 9cm -3 K-3/2) and the band
    9·1 answer
  • The outer surface temperature of a glass filled with iced water may drop below the dew-point temperature of the surrounding air,
    5·1 answer
  • At the grocery store you place a pumpkin with a mass of 12.5 lb on the produce spring scale. The spring in the scale operates su
    5·1 answer
  • Fluid originally flows through a tube at a rate of 100 cm^3/s. To illustrate the sensitivity of the Poiseuille flow rate to vari
    7·1 answer
  • An inventor claims to have developed a power cycle operating between hot and cold reservoirs at 1175 K and 295 K, respectively,
    9·1 answer
  • Why Your first project as the new web designer at Smart Design is to increase web traffic to help boost web orders. Before you b
    6·1 answer
  • During a long run a very well-trained dog can use up to 1000 ‘cal’/hour (Note: Food calories differ by a factor of one thousand
    14·1 answer
  • 3. If nothing can ever be at absolute zero, why does the concept exist?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!