Answer:
Explanation:
From the question;
We will make assumptions of certain values since they are not given but the process to achieve the end result will be the same thing.
We are to calculate the following task, i.e. to determine the electric field at the distances:
a) at 4.75 cm
b) at 20.5 cm
c) at 125.0 cm
Given that:
the charge (q) = 33.3 nC/m
= 33.3 × 10⁻⁹ c/m
radius of rod = 5.75 cm
a) from the given information, we will realize that the distance lies inside the rod. Provided that there is no charge distribution inside the rod.
Then, the electric field will be zero.
b) The electric field formula 

E = 1461.95 N/C
c) The electric field E is calculated as:

E = 239.76 N/C
Answer:
trigonometry (guessing)
Explanation:
ellipse: is the shape of an orbit : looks like an oval
periapsis : shortest distance between something like the moon and the planet its orbiting around like the earth
parallax is triangulation. like how gps works. looking at a star one day and then looking at it again 6 months later, an astronomer can see a difference in the viewing angle for the star. With trigonometry, the different angles yield a distance. This technique works for stars within about 400 light years of earth
https://science.howstuffworks.com/question224.htm
By comparing the intrinsic brightness to the star's apparent brightness we can calculate the distance of stars
1/r^2 rule states that the apparent brightness of a light source is proportional to the square of its distance.Jan 11, 2022
https://www.space.com/30417-parallax.html
alternative distance measurement for stars used by most astronomers is the parsec. A star with a parallax angle of 1 arcsecond has a distance of 1 parsec, or 1 parsec per arcsecond of parallax, which is about 3.26 light years
blossoms.mit.edu
.
Answer:
The magnification is a function of the lenses in the objective and the eyepiece, so the magnification of the two must be multiplied to obtain the total magnification possible. So, for example, if the objective lens was 4X and the eye piece lens was 10X, the total magnification would be 40. (4 x 10 = 40)
Explanation:
Answer:
Explanation:
Sam mass=75kg
Height is 50m
20° frictionless slope
Horizontal force on Sam is 200N
According to the work energy theorem, the net work done on Sam will be equal to his change in kinetic energy.
Therefore
Wg - Ww =∆K.E
Note initial the body was at rest at top of the slope.
Then, ∆K.E is K.E(final) - K.E(initial)
K.E Is given as ½mv²
Since initial velocity is zero then, K.E(initial ) is zero
Therefore, ∆K.E=½mVf²
Wg is work done by gravity and it is given by using P.E formulas
Wg=mgh
Wg=75×9.8×50
Wg=36750J
Ww is work done by wind and it's is given by using formulae for work
Work=force × distance
Ww=horizontal force × horizontal distance
Using Trig.
TanX=opposite/adjacent
Tan20=h/x
x=h/tan20
x=50/tan20
x=137.37m
Then,
Ww=F×x
Ww=200×137.37
We=27474J
Now applying the formula
Wg - Ww =∆K.E
36750 - 27474 =½×75×Vf²
9276=37.5Vf²
Vf²=9275/37.5
Vf²= 247.36
Vf=√247.36
Vf=15.73m/s