The plane's velocity of 35.11 m/s is actually due in a north-eastward direction. The 12 m/s velocity is the vertical component of the plane's velocity, hence it is pointing northwards. We will use the formula:
Vy = Vsin∅
To determine the angle ∅ at which the plane is flying. This is:
12 = 35.11 * sin∅
∅ = 20.0 degrees
The eastward velocity is:
Vx = Vcos∅
Vx = 35.11 * cos(20)
Vx = 33.0 m/s
The plane's eastward velocity is 33.0 m/s
Total time elapsed is =8.2y
The starting event is the astronaut leaving Earth. The finishing event is the astronaut arriving at the star system. The time between these events on Earth is:
Δt=3.9ly/0.9c
Δt=4.3y
For the astronaut, two events occur at the same position and can be measured with just one clock. Hence,
Δτ

Δτ

Δτ=1.8ly
The total elapsed time is:
T elapsed=Δt+3.9
T elapsed=4.3+3.9
T elapsed=8.2y
learn more about time from here: brainly.com/question/28208983
#SPJ4
Answer: 4 s
Explanation:
Given
The ball leaves the hand of student with a speed of 
When the hand is
above the ground
Using the equation of motion we can write

Substitute the values
![\Rightarrow 2.5=-19t+0.5\times 9.8t^2\\\Rightarrow 4.9t^2-19t-2.5=0\\\\\Rightarrow t=\dfrac{19\pm \sqrt{(-19)^2-4\times 4.9\times (-2.5)}}{2\times 19}\\\Rightarrow t=4.0049\quad [\text{Neglecting the negative value of }t]](https://tex.z-dn.net/?f=%5CRightarrow%202.5%3D-19t%2B0.5%5Ctimes%209.8t%5E2%5C%5C%5CRightarrow%204.9t%5E2-19t-2.5%3D0%5C%5C%5C%5C%5CRightarrow%20t%3D%5Cdfrac%7B19%5Cpm%20%5Csqrt%7B%28-19%29%5E2-4%5Ctimes%204.9%5Ctimes%20%28-2.5%29%7D%7D%7B2%5Ctimes%2019%7D%5C%5C%5CRightarrow%20t%3D4.0049%5Cquad%20%5B%5Ctext%7BNeglecting%20the%20negative%20value%20of%20%7Dt%5D)
Thus, the ball will take 4 s to hit the ground.
10 kilograms of mass weighs 98.1 newtons on Earth,
16.2 newtons on the Moon, 37.1 newtons on Mars,
and other weights in other places.