Answer:
(a) 6.567 * 10^15 rev/s or hertz
(b) 8.21 * 10^14 rev/s or hertz
Explanation:
Fn= 4π^2k^2e^4m * z^2/(h^3*n^3)
Where Fn is frequency at all levels of n.
Z = 1 (nucleus)
e = 1.6 * 10^-19c
m = 9.1 * 10^-31 kg
h = 6.62 * 10-34
K = 9 * 10^9 Nm2/c2
(a) for groundstate n = 1
Fn = 4 * π^2 * (9*10^9)^2*(1.6*10^-19)^4* (9.1 * 10^-31) * 1 / (6.62 * 10^-31)^3 = 6.567 * 10^15 rev/s
(b) first excited state
n = 1
We multiple the groundstate answer by 1/n^3
6.567 * 10^15 rev/s/ 2^3
F2 = 8.2 * 10^ 14 rev/s
Answer:
The manufacturer of a 9V dry-cell flashlight battery says that the battery will deliver 20 mA for 80 continuous hours. During that time the voltage will drop from 9V to 6V. Assume the drop in voltage is linear with time. How much energy does the battery deliver in this 80 h interval?
Explanation:
It appears to be a <span>spiral shape. </span>
The velocity of shortening refers to the speed of the contraction from
the muscle shortening while lifting a load. The relationship between the
resistance and velocity of shortening is inverse. The greater the
resistance, the shorter the velocity of shortening and the smaller the
resistance, the larger the velocity of shortening.
Hopefully this help :)
In the given statement: "<span>Since monsoons are storms that usually occur during a specific time of year in certain regions, you could not compare them to thunderstorms. </span>" is false. Therefore, among the given choices, the correct answer is B. False.