1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spayn [35]
3 years ago
8

Carbon-14 has a half-life of 5,700 years. How long will it take for 6.25% of the Carbon-14 to be remaining?

Physics
1 answer:
IRISSAK [1]3 years ago
4 0

Answer:

22,800 years

Explanation:

Half life equation:

A = A₀ (½)^(t / T)

where A is the final amount,

A₀ is the initial amount,

t is time,

and T is the half life.

0.0625 = (½)^(t / 5700)

log 0.0625 = (t / 5700) log 0.5

4 = t / 5700

t = 22,800

It takes 22,800 years.

You might be interested in
A nonconducting sphere of diameter 10.0 cm carries charge distributed uniformly inside with charge density of +5.50 µC/m3 . A pr
VLD [36.1K]

Answer:

t = 2.58*10^-6 s

Explanation:

For a nonconducting sphere you have that the value of the electric field, depends of the region:

rR:\\\\E=k\frac{Q}{r^2}

k: Coulomb's constant = 8.98*10^9 Nm^2/C^2

R: radius of the sphere = 10.0/2 = 5.0cm=0.005m

In this case you can assume that the proton is in the region for r > R. Furthermore you use the secon Newton law in order to find the acceleration of the proton produced by the force:

F=m_pa\\\\qE=m_pa\\\\k\frac{qQ}{r^2}=m_pa\\\\a=k\frac{qQ}{m_pr^2}

Due to the proton is just outside the surface you can use r=R and calculate the acceleration. Also, you take into account the charge density of the sphere in order to compute the total charge:

Q=\rho V=(5.5*10^{-6}C/m^3)(\frac{4}{3}\pi(0.05m)^3)=2.87*10^{-9}C\\\\a=(8.98*10^9Nm^2/C^2)\frac{(1.6*10^{-19}C)(2.87*10^{-9}C)}{(1.67*10^{-27}kg)(0.05m)^2}=9.87*10^{11}\frac{m}{s^2}

with this values of a you can use the following formula:

a=\frac{v-v_o}{t}\\\\t=\frac{v-v_o}{a}=\frac{2550*10^3m/s-0m/s}{9.87*10^{11}m/s^2}=2.58*10^{-6}s

hence, the time that the proton takes to reach a speed of 2550km is 2.58*10^-6 s

3 0
3 years ago
At the train station, you notice a large horizontal spring at the end of the track where the train comes in. This is a safety de
e-lub [12.9K]

Assume a maximum stopping acceleration of g/2 where g is acceleration due to gravity.

Answer:

2.99 m/s

Explanation:

Stopping distance, s = 3 ft = 0.914 m

final velocity, v = 0

a = g/2 = 4.9 m/s²

Use third equation of motion:

v^2-u^2 = 2as

substitute the values to find the speed of train:

0 -u^2 = 2\times -4.9 \times 0.914 \\u^2=8.96 \\u=2.99 m/s

6 0
3 years ago
Stress distributed over an area is best described as: a) External force b) Axial force c) Radial force d) Internal resistive for
Anit [1.1K]

Answer:

Option D is the correct answer.

Explanation:

Stress is the force per unit area that tend to change the shape of body.

Stress is defined as internal resistive force per unit area.

         \texttt{Stress}=\frac{\texttt{Internal resistive force}}{\texttt{Area}}

         \sigma =\frac{F}{A}

So, so stress distributed over an area is best described as internal resistive force.

Option D is the correct answer.

8 0
3 years ago
PLEASE HURRYY!!!!The diagram shows two balls released from a device at the same time. The ball on the left falls freely from res
LenaWriter [7]

Answer:

i'm pretty sure its B but i may be wrong if you dont wanna take the chance wait for someone

Explanation:

4 0
3 years ago
Read 2 more answers
A proton is initially moving west at a speed of 1.10 106 m/s in a uniform magnetic field of magnitude 0.281 T directed verticall
kifflom [539]

Answer:

so here it will move in circle with radius 4.06 cm

Explanation:

As we know that proton is moving towards west while the magnetic field is vertically upwards

So here the force on the proton must be perpendicular to the velocity

So here we have

F = q(\vec v \times \vec B)

so here we have

F = qvB sin90

since force is perpendicular to the velocity so here it must be centripetal force

here we have

\frac{mv^2}{R} = qvB

so we have

R = \frac{mv}{qB}

R = \frac{(1.66 \times 10^{-27})(1.10 \times 10^6)}{(1.6 \times 10^{-19})(0.281)}

R = 4.06 cm

so here it will move in circle with radius 4.06 cm

8 0
3 years ago
Other questions:
  • A pump uses a piston of 15 cm diameter that moves at 2.0 cm/s as it pushes a fluid through a pipe. what is the speed of the flui
    9·1 answer
  • Which of the following is an example of the law of conservation of energy?
    7·2 answers
  • Restate newton's first law in terms of acceleratin
    11·1 answer
  • A source emits monochromatic light of wavelength 495 nm in air. when the light passes through a liquid, its wavelength reduces t
    9·1 answer
  • T Object]User: Which of the following does not affect the electrical resistance of a body?
    5·2 answers
  • 1.A car goes off a cliff horizontally at 49 m/s and falls for 5 seconds
    12·1 answer
  • True or false: Equilibrium is the continual change from product to reactant and back.
    10·1 answer
  • A particular gun (10kg) is able to fire 20 gram bullets at a speed of 350 m/s. From this information, calculate roughly how much
    15·1 answer
  • A box with a mass of 50 kg is raised straight up. What is the force of the box?
    5·1 answer
  • The crust is composed primarily of basalt and _____________.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!