C is probably the correct one
law of conservation of energy
aka the first law of thermodynamics
Answer:
0.08 ft/min
Explanation:
To get the speed at witch the water raising at a given point we need to know the area it needs to fill at that point in the trough (the longitudinal section), which is given by the height at that point.
So we need to get the lenght of the sides for a height of 1 foot. Given the geometry of the trough, one side is the depth <em>d</em> and the other (lets call it <em>l</em>) is given by:

since the difference between the upper and lower base is the increase in the base and we are only at halft the height.
Now we can calculate the longitudinal section <em>A</em> at that point:

And the raising speed <em>v </em>of the water is given by:

where <em>q</em> is the water flow (1 cubic foot per minute).
Answer:
<h2>104 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 26 × 4
We have the final answer as
<h3>104 N</h3>
Hope this helps you
363 m/s is the speed of sound through the air in the pipe.
Answer: Option B
<u>Explanation:</u>
The formula used to calculate the wavelength given as below,

--------> eq. 1
In power system, harmonics define by positive integers of the fundamental frequency. So the third order harmonic is a multiple of the third fundamental frequency. Each harmonic creates an additional node and an opposite node, as well as an additional half wave within the string.
If the number of waves in the circuit is known, the comparison between standing wavelength and circuit length can be calculated algebraically. The general expression for this given as,

For first harmonic, n =1

For second harmonic, n =2

For third harmonic, n =3

-------> eq. 2
Here given f = 939 Hz, L = 0.58 m...And, substitute eq 2 in eq 1 and values, we get
