Explanation:
The efficiency of a heat engine is defined as the ratio of the work output to the heat input into the system.
- It is highly impossible to get an engine that is 100% efficient.
- A heat engine that is 100% efficient suggests that all the heat input into the system is used to do work completely.
- There is no heat loss.
Efficiency =
x 100
Efficiency has no unit
Learn more:
Heat brainly.com/question/914750
#learnwithBrainly
Answer:
∆h = 0.071 m
Explanation:
I rename angle (θ) = angle(α)
First we are going to write two important equations to solve this problem :
Vy(t) and y(t)
We start by decomposing the speed in the direction ''y''


Vy in this problem will follow this equation =

where g is the gravity acceleration

This is equation (1)
For Y(t) :

We suppose yi = 0

This is equation (2)
We need the time in which Vy = 0 m/s so we use (1)

So in t = 0.675 s → Vy = 0. Now we calculate the y in which this happen using (2)

2.236 m is the maximum height from the shell (in which Vy=0 m/s)
Let's calculate now the height for t = 0.555 s

The height asked is
∆h = 2.236 m - 2.165 m = 0.071 m
Answer:
O pH is a measure of the concentration of H+ ions in a solution of an acid or base. The pH plots
the concentration of solutions in a range from 0-14.
Explanation:
pH is a measure of how acidic/basic water is. The range goes from 0 to 14, with 7 being neutral.
Answer:
The mass of Laura and the sled combined is 887.5 kg
Explanation:
The total force due to weight of Laura and friction on the sled can be calculated as follows;

= (400 + 310) N
= 710 N
From Newton's second law of motion, "the rate of change of momentum is directly proportional to the applied force.

where;
is mass of Laura and
is mass of sled
Mass of Laura and the sled combined is calculated as follows;

given
V = Δv = 4-0 = 4m/s
t = 5 s

Therefore, the mass of Laura and the sled combined is 887.5 kg
Answer:
0 kg m/s before and after collision
Explanation:
Let m, v be the mass and speed of the 2 balls, respectively, before the collision. Since they have the same mass and same speed but in opposite direction, the total momentum of the system would be:
P = mv - mv = 0 kg m/s
As the collision is elastic. The total momentum after the collision is the same as the total momentum before the collision, which is 0.