Answer:
A) The space time coordinate x of the collision in Earth's reference frame is
.
B) The space time coordinate t of the collision in Earth's reference frame is

Explanation:
We are told a rocket travels in the x-direction at speed v=0,70 c (c=299792458 m/s is the exact value of the speed of light) with respect to the Earth. A collision between two comets is observed from the rocket and it is determined that the space time coordinates of the collision are (x',t') = (3.4 x 10¹⁰ m, 190 s).
An event indicates something that occurs at a given location in space and time, in this case the event is the collision between the two comets. We know the space time coordinates of the collision seen from the reference frame of the rocket and we want to find out the space time coordinates in Earth's reference frame.
<em>Lorentz transformation</em>
The Lorentz transformation relates things between two reference frames when one of them is moving with constant velocity with respect to the other. In this case the two reference frames are the Earth and the rocket that is moving with speed v=0,70 c in the x axis.
The Lorentz transformation is




prime coordinates are the ones from the rocket reference frame and unprimed variables are from the Earth's reference frame. Since we want position x and time t in the Earth's frame we need the inverse Lorentz transformation. This can be obtained by replacing v by -v and swapping primed an unprimed variables in the first set of equations




First we calculate the expression in the denominator


then we calculate t




finally we get that

then we calculate x






finally we get that

Answer:
the soild material is allowe to settle into a sludge layer the remaining waste water undergoes a secondart treatment that uses bacteria to break down organic matter
treat water is left to sit while particles settle out, with settle d particles being added to sluudge,
water is disinfeted
Explanation:
Answer:
The time taken will be 0.553 seconds.
Explanation:
We should start off by finding the force exerted by the rope on the 3kg weight in this case.
Weight of 5kg mass = 5 * 9.81 = 49.05 N
Weight of 3kg mass = 3 * 9.81 = 29.43 N
The force acting upward on the 3kg mass will equal the weight of the 5kg mass. Thus the resultant force acting on the 3kg mass is:
Total force = 49.05 - 29.43 = 19.62 N (upwards)
We can now find the acceleration:
F = m * a
19.62 = 3 * a
a = 6.54 m/s^2
We now use the following equation of motion to get the time taken to travel 1 meter:


t = 0.553 seconds
Given : A ball of mass 40 g moving at a velocity of 4 m/s.
To find : Calculate the kinetic energy in joules ?
Solution :
The kinetic energy formula is given by,
where, v is the velocity v=4 m/s
m is the mass m=40 g
Convert g into kg,
Substitute the values,
Therefore, the kinetic energy is 0.32 Joules.
The answer & explanation for this question is given in the attachment below.