Resonance:
The resounding recurrence is the recurrence at which a bit of metal, plastic or whatever else swings/vibrates with minimal measure of vitality input. Think about a man on a play area swing. You realize that it requires next to no push to keep the individual swinging. The recurrence at which they swing forward and backward is their full recurrence. In the event that you endeavor to influence them to swing speedier or slower, it will take altogether more vitality.
Resonating Panels:
This kind of clamor is caused when the bass notes are an indistinguishable recurrence from the thunderous recurrence of a metal or plastic board. To stop or decrease the commotion related with this kind of issue, you can do two or three things.
Rattling:
This sort of commotion would be caused when 2 bits of metal, plastic, whatever... are sufficiently close to hammer into each other when they resound. This is most likely best illuminated by filling the hole between the two vibrating parts with silicone sealant or shut cell froth climate stripping. The climate stripping is a superior arrangement in places like behind the tag. On the off chance that you have a tag outline, you can get some truly thin climate stripping and put between the casing and the plate.
The answer is option D)
this is because the heat radiated by the flame is mostly absorbed by the air surrounding it, so the air becomes hot and its density decreases (because of expansion), therefore it goes up and it is replaced by cooler air. since all of the hot air flies up, non goes side ways to heat up the match stick, hence it remains cool and does not light up.
option A) also sounds correct, but it isn't. this is because the flame IS hot enough to burn the match stick, it's just that the match stick is positioned the wrong way
Answer:
Latent heat, along with birds, ride those rising columns of air. This brings up a third and the ultimate mechanism by which the Earth's heat escapes into space, which is electromagnetic radiation. Every object, including the Earth's surface, absorbs and radiates heat electromagnetically
Explanation:
I LITERALLY JUST COPIED AND PASTED THIS FROM GOOGLE..i dont understand anything from it since im not on this topic but hope this help a little....i got it from google ..not my own work
The best possible Answer is c
Answer:
The Hydrostatic force is 
The location of pressure center is
Explanation:
From the question we are told that
The height of the gate is 
The weight of the gate is 
The height of the water is 
The density of water is 
Note used
for height of water and height of gate immersed by water since both have the same value
The area of the gate immersed in water is mathematically represented as

substituting values


The hydrostatic force is mathematically represented as

Where


So


The center of pressure is mathematically represented as

Where
is the moment of inertia of the gate which mathematically represented as

The
is the height of gate immersed in water
Thus

