1) A negatively charged ion is chloride
2) Moving from left to right, valence electrons increase by one.
3) The period number gives information about how many energy levels it has
4) Fluorine has a charge of 1–
5) Potassium and iodine form an ionic bond
The periodic table is an arrangement of elements into groups and periods based on their periodic properties.
In the periodic table, elements are arranged in groups and periods. There are 18 groups and 8 periods.
Chlorine is in group 17, there have seven outermost electrons hence the chlorine atom needs only one more electron in order to attain a stable octet. This is done by accepting one electron to form the negatively charged chloride ion.
As we move from one period to another, one extra electron is added to the outermost shell of elements. Hence, the valence electrons increases by one.
The period to which an element belongs shows you the number of shells or energy levels in the atom of that element.
Fluorine is in group 17. One electron is needed to achieve a stable octet. When an atom accepts one electron, its charge is 1–.
Bonding based on ionic charges occurs between metals and nonmetals. Potassium is a metal of group 1 and iodine is a non metal of group 17 hence they can bond together based on their ionic charges.
Learn more:brainly.com/question/23277186
Psychiatry assesses and treats people with mental disorders
In linear motion , when a body moves with uniform velocity , in time t , its linear displacement will be ;
S = r∅ S = vt
r∅ = vt
r.∅ / t = v
As
v = rw
where ∅ = 90° is the angle between between radius vector r and angular velocity w (omega )
In case ∅ ≠ 90° , we can write v = r w sin∅
It gives us v = w× r
Bourne believed that an object would float or sink at will as long as he could <span>manipulate the effect's of buoyancy which control and object to sink or float. Hope this helps!
</span>
Answer:
Masa, m = 0.088 kg
Explanation:
Given the following data;
Temperatura inicial = 30°C
Temperatura final = 120°C
Capacidad calorífica específica = 138J/kg.K
Calor absorbido, Q = 4400 cal.
Para encontrar la masa;
La capacidad calorífica viene dada por la fórmula;
Dónde;
Q representa la capacidad calorífica o la cantidad de calor.
m representa la masa de un objeto.
c representa la capacidad calorífica específica del agua.
dt representa el cambio de temperatura.
dt = T2 - T1
dt = 120 - 30
dt = 90°C to kelvin = 273 + 90 = 363K
Sustituyendo en la fórmula, tenemos;
Masa, m = 0.088 kg