Answer:
Open circuit
Explanation:
An open circuit is simply an electrical circuit that is not complete. In such a circuit, there is a gap and this will not allow the electric current to pass through.
Despite all the elements being complete in the circuit, an open circuit will halt the flow of electric current and will not do deliver the necessary energy it is supposed to.
In such a circuit, the wires are cut of and not connected properly.
The reverse is a closed circuit.
Answer:

Explanation:
The magnitude of the electrostatic force between two charged objects is

where
k is the Coulomb's constant
q1 and q2 are the two charges
r is the separation between the two charges
The force is attractive if the charges have opposite sign and repulsive if the charges have same sign.
In this problem, we have:
is the distance between the charges
since the charges are identical
is the force between the charges
Re-arranging the equation and solving for q, we find the charge on each drop:

No one can really tell exactly how old the universe is. However, scientists have attempted to estimate the time by using the concept of Doppler effect which depends on the frequency of the stars and their relative velocities. From literature, the universe is about 13.82 billion years old. Thus, the age of the universe is 13.82×10⁹ times longer than a year.
Answer:
<em>It matters because crystalline and amorphous materials have different properties. The arrange affects the melting point (defined in crystals and a larger range in amorphous) and shape (geometrical in crystals, no geometrical in amorphous). </em>
Explanation:
The particles that compose a solid material are held in place by strong tractive forces between them when we analyze solids we consider the position of the atoms (molecules or ions) rather than their motion (which is important in liquids and gases). This positioning can be arranged in two general ways:
- Crystalline solids have internal structures that in turn lead to distinctive flat surfaces or face, these faces intersect at angles that are characteristic of the substance, crystals tend to have sharp, well defined and high melting points because of the same distance from the same number and type of neighbors. They generally have geometric shapes, some examples are diamonds, metals, salts.
- Amorphous solids produce irregular or curved surfaces when broken and they have poorly defined patterns when exposed to x rays because of their irregular array. In contrast with crystal solids, amorphous solids soften over a wide temperature range due to the different amounts of thermal energy needed to overcome different interactions. Some examples of these solids are gels, plastics, and some polymers.
I hope you find this information useful and interesting! Good luck!
Answer:
1.) Putting club or the putter
2.) Either the 4-, 5-, or the 6- iron club
3.) 14 clubs
4.) The height of the golfer
Explanation:
I used to golf