Answer:
1) 64.2 mi/h
2) 3.31 seconds
3) 47.5 m
4) 5.26 seconds
Explanation:
t = Time taken = 2.5 s
u = Initial velocity = 0 m/s
v = Final velocity = 21.7 m/s
s = Displacement
a = Acceleration
1) Top speed = 28.7 m/s
1 mile = 1609.344 m

1 hour = 60×60 seconds


Top speed of the cheetah is 64.2 mi/h
Equation of motion

Acceleration of the cheetah is 8.68 m/s²
2)

It takes a cheetah 3.31 seconds to reach its top speed.
3)

It travels 47.5 m in that time
4) When s = 120 m

The time it takes the cheetah to reach a rabbit is 120 m is 5.26 seconds
Answer:
280 N
Explanation:
Applying Newton's third second law of motion,
F = m(v-u)/t................... Equation 1
Where F = Magnitude of the average force on the ball during contact, v = final velocity of the ball, u = initial velocity of the ball, t = time of contact of the ball and the wall.
Note: Let the direction of the initial velocity of the ball be positive
Given: m = 4 kg, u = 3.0 m/s, v = -4.0 m/s (bounce off), t = 0.1 s
Substitute into equation 1
F = 4(-4-3)/0.1
F = 4(-7)/0.1
F = -28/0.1
F = -280 N.
Note: The negative sign tells that the force on the ball act in opposite direction to the initial motion of the ball
Answer:
The excess charge on earth's surface was calculated to be 4.56 × 10⁵ C
Explanation:
Using the formula for an electric field;
E = kQ/r²
k = 1/(4πε₀) = 8.99 × 10⁹ Nm²/C²
E = 100N/C
r = radius of the earth = 6400 km = 6400000m
Q = Er²/k = 100 × (6400000)²/(8.99 × 10⁹)
Q = 455617.4 C = 4.56 × 10⁵ C
Hope this helps!!!
It will use a lot more energy (electricity) to cool down the room. Because heat energy from outside the room can easily transfer into the room again if the room is not well insulated. So more energy is needed to cool down the room again