Answer:



Explanation:
The Intensity
of the beam is

The diameter of the beam is 0.900mm; therefore, the area is


and since
, the intensity of the beam is


Now, the intensity
is related to
by the relation

solving for
we get

putting in the numbers we get:


The amplitude of magnetic field
is related to
by

putting in numerical values we get:


The average energy density of the laser light is



Its is temperture
hope this helps :)
Answer:
–77867 m/s/s.
Explanation:
From the question given above, the following data were obtained:
Initial velocity (u) = 34.5 m/s
Final velocity (v) = –23.9 m/s
Time (t) = 0.00075 s
Acceleration (a) =?
Acceleration is simply defined as the rate of change of velocity with time. Mathematically, it is expressed as:
Acceleration = (final velocity – Initial velocity) /time
a = (v – u) / t
With the above formula, we can obtain acceleration of the ball as follow:
Initial velocity (u) = 34.5 m/s
Final velocity (v) = –23.9 m/s
Time (t) = 0.00075 s
Acceleration (a) =?
a = (v – u) / t
a = (–23.9 – 34.5) / 0.00075
a = –58.4 / 0.00075
a = –77867 m/s/s
Thus, the acceleration of the ball is –77867 m/s/s.
The frictional force is 218.6 N
Explanation:
The block in the problem is at rest along the inclined surface: this means that the net force acting along the direction parallel to the incline must be zero.
There are two forces acting along this direction:
- The component of the weight parallel to the incline, downward along the plane, of magnitude

where
m = 46 kg is the mass
is the acceleration of gravity
is the angle of the incline
- The (static) frictional force, acting upward, of magnitude 
Since the block is in equilibrium, we can write

And substituting, we find the force of friction:

Learn more about frictional force along an inclined plane:
brainly.com/question/5884009
#LearnwithBrainly
Answer:
a) 4500 cycles b) 0.0667s c) 6.67s
Explanation:
a) 15 Hz= 15 cycles/ s
5 mins= 300s
15 cycles/s * 300s= 4500 cycles
b) Period= 1/ frequency
Period= 1/ 15 cycles/s
Period= 0.0667s
c) Period * number of revolutions= time
0.0667 * 100= 6.67s