Answer:
a) F = 527.65 N, Force applied is upwards.
b)F = - 527.65 N, where, negative sign depicts Force is applied downwards.
Explanation:
Data provided:
Weight of the firefighter = 756 N
Mass of the firefighter = 756/9.8 = 77.14 Kg
Acceleration, a = 2.96 m/s²
a) In the absence of the pole the firefighter would have been moving down with an acceleration of 9.8 m/s (i.e the acceleration due to the gravity), but due to the presence of the pole the acceleration of the firefighter has been reduced. thus, a force is applied by the pole on the firefighter to reduce the acceleration.
therefore, we have
F = ma(net) = 77.14 × (9.8-2.96) = 527.65 N, Force applied is upwards.
B) According to the Newton's third law, the force will be equal and opposite to the force in the part a)
thus, we have
F = - 527.65 N
The answer is true. The table does show an object moving with changing speed.
Answer:
Multiply the air pressure by the area of the tabletop.
Explanation:
The relationship between pressure, force and area is given by:

where in this case, p is the air pressure, F is the force exerted and A the area of the tabletop. By re-arranging the equation, we can solve for F, the force exerted:

So, the correct answer is:
The force exerted on the tabletop can be found by multiplying the air pressure by the area of the tabletop.
Answer:
7.1 m/s
Explanation:
First, find the time it takes for the fish to reach the water.
Given in the y direction:
Δy = 6.1 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
6.1 m = (0 m/s) t + ½ (9.8 m/s²) t²
t = 1.12 s
Next, find the velocity needed to travel 7.9 m in that time.
Given in the x direction:
Δx = 7.9 m
a = 0 m/s²
t = 1.12 s
Find: v₀
Δx = v₀ t + ½ at²
7.9 m = v₀ (1.12 s) + ½ (0 m/s²) (1.12 s)²
v₀ = 7.1 m/s