Answer:
The ground state configuration is the lowest energy, most stable arrangement. An excited state configuration is a higher energy arrangement (it requires energy input to create an excited state). Valence electrons are the electrons utilised for bonding.
or the
FIGURE 5.9 The arrow shows a second way of remembering the order in which sublevels fill. Table 5.2 shows the electron configurations of the elements with atomic numbers 1 through 18.
Element Atomic number Electron configuration
sulfur 16 1s22s22p63s23p4
chlorine 17 1s22s22p63s23p5
argon 18 1s22s22p63s23p6
or the
Two electrons
Two electrons fill the 1s orbital, and the third electron then fills the 2s orbital. Its electron configuration is 1s22s1.
Explanation:
<em>Choose </em><em>your </em><em>answer </em>
<em>brainlilest </em><em>me</em>
<em><u>CARRY </u></em><em><u>ON </u></em><em><u>LEARNING</u></em>
<u>Answer:</u> The standard free energy change of formation of
is 92.094 kJ/mol
<u>Explanation:</u>
We are given:

Relation between standard Gibbs free energy and equilibrium constant follows:

where,
= standard Gibbs free energy = ?
R = Gas constant = 
T = temperature = ![25^oC=[273+25]K=298K](https://tex.z-dn.net/?f=25%5EoC%3D%5B273%2B25%5DK%3D298K)
K = equilibrium constant or solubility product = 
Putting values in above equation, we get:

For the given chemical equation:

The equation used to calculate Gibbs free change is of a reaction is:
![\Delta G^o_{rxn}=\sum [n\times \Delta G^o_f_{(product)}]-\sum [n\times \Delta G^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28reactant%29%7D%5D)
The equation for the Gibbs free energy change of the above reaction is:
![\Delta G^o_{rxn}=[(2\times \Delta G^o_f_{(Ag^+(aq.))})+(1\times \Delta G^o_f_{(S^{2-}(aq.))})]-[(1\times \Delta G^o_f_{(Ag_2S(s))})]](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo_%7Brxn%7D%3D%5B%282%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28Ag%5E%2B%28aq.%29%29%7D%29%2B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28S%5E%7B2-%7D%28aq.%29%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28Ag_2S%28s%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![285.794=[(2\times 77.1)+(1\times \Delta G^o_f_{(S^{2-}(aq.))})]-[(1\times (-39.5))]\\\\\Delta G^o_f_{(S^{2-}(aq.))=92.094J/mol](https://tex.z-dn.net/?f=285.794%3D%5B%282%5Ctimes%2077.1%29%2B%281%5Ctimes%20%5CDelta%20G%5Eo_f_%7B%28S%5E%7B2-%7D%28aq.%29%29%7D%29%5D-%5B%281%5Ctimes%20%28-39.5%29%29%5D%5C%5C%5C%5C%5CDelta%20G%5Eo_f_%7B%28S%5E%7B2-%7D%28aq.%29%29%3D92.094J%2Fmol)
Hence, the standard free energy change of formation of
is 92.094 kJ/mol
potassium belongs to group IA of the periodic table.
Answer:
<h3>The answer is kinetic energy</h3>
Explanation:
<h2>The answer is Kinetic Energy because take for an example, When an apple falls from the tree to the ground, its energy of position is then made into kinetic energy, the energy of motion, as it falls to the ground. </h2>
------------------------------------------------------------------------------------------------
Hope this helps! Give me Brainliest if u can!
Answer:
A = 65.46 u
Explanation:
Given that,
The composition of zinc is as follows :
Zn-64 = 48.63%
Zn-66 = 27.90%
Zn-67 = 4.10%
Zn-68 = 18.75%
Zn-70 = .62%
We need to find the average atomic mass of the given element. It can be solved as follows :

So, the average atomic mass of zinc is 65.46 u.