Answer:
A carbohydrate is a compound composed of molecules of carbon (C), hydrogen (H), and oxygen (O) such that its general chemical formula is
.
Biochemical functions of carbohydrates: Carbohydrates provide Stored Energy, Carbohydrates help to preserve Muscle and promote digestive health and Carbohydrates build macromolecules
Explanation:
A carbohydrate is a compound composed of molecules of carbon (C), hydrogen (H), and oxygen (O) such that its general chemical formula is
.
Biochemical functions of carbohydrates:
1. Carbohydrates provide Stored Energy.
2. Carbohydrates help to preserve Muscle and promote digestive health.
3. Carbohydrates build macromolecules
<span>Silver oxalate dissociation equation is following:
</span><span>
Ag</span>₂C₂O₄(s) ⇄ 2Ag⁺(aq) + C₂O₄²⁻(aq)
According to reaction follows next stoichiometric ratio:
[Ag⁺] : [C₂O₄²⁻] = 2 : 1
[C₂O₄²⁻] = [Ag⁺] / 2
[C₂O₄²⁻] = (1.7×10⁻⁴)/2 = 8.5×10⁻⁵ M
So, solubility product constants for silver oxalate is:
Ksp = [Ag⁺]² x [C₂O₄²⁻]
Ksp = [1.7×10⁻⁴]² x [8.5×10⁻⁵]
Ksp = 2.46×10⁻¹²
It’s C because wood isn’t easy to get heat through while metal can heat up quickly.
Answer:
The final electron acceptor of the electron transport chain is oxygen
Explanation:
Four electrons gotten from cytochrome c are involved in the conversion of a molecule of oxygen (O2) to two molecules of water (H2O). This final electron transfer occurs in complex IV. Complex IV, also known as cytochrome c oxidase, facilitates the the use of four protons from the matrix of the mitochondrion, in the production of water molecules while pumping four protons to the intermembrane space of the mitochondrion.
The equation of state for a hypothetical ideal gas is known as the ideal gas law, sometimes known as the general gas equation. i.e. PV = nRT or P1V1 = P2V2.
- According to the ideal gas law, the sum of the absolute temperature of the gas and the universal gas constant is equal to the product of the pressure and volume of one gram of an ideal gas.
- Robert Boyle, Gay-Lussac, and Amedeo Avogadro's observational work served as the basis for the ideal gas law. The Ideal gas equation, which simultaneously describes every relationship, is obtained by combining all of their observations into a single statement.
- When applying the gas constant R = 0.082 L.atm/K.mol, pressure, volume, and temperature should all be expressed in units of atmospheres (atm), litres (L), and kelvin (K).
- At high pressure and low temperature, the ideal gas law basically fails because molecule size and intermolecular forces are no longer negligible but rather become significant considerations.
Learn more about ideal gas law here:
brainly.com/question/26040104
#SPJ9