Answer:
zero
When a Body start a from rest ,its initial velocity is zero.
Answer:
V = 381.70 m³
Explanation:
ρ air = 1.28 kg / m³
ρ helium = 0.18 kg / m³
R = 4.5 m
Vb = 0.068 m³
mb = 123 kg
To determine the volume of helium in the balloon when fully inflated
V = 4 / 3 π * R ³
V = 4 * π / 3 ( 4.5 m )³
V = 381.70 m³
To determine the mass total
m = ρ helium * V
m = 0.18 kg / m³ * 381.70 m³
m = 68.70 kg
mt = ( 68.70 + 123 )kg
mt = 191.70 kg
Answer:
Acceleration = 2.35 m/
Speed = 8.67 m/s
Explanation:
The coefficient of friction , u =0.3
The angle of incline = 30°
The two forces acting on block are weight and friction.
weight along the incline = mg cos60° =
= 0.5 mg
Friction along incline = umg cos30° = mg 
Friction along incline = 0.26 mg
Net force acting on the weight = (0.5 - 0.26) mg = 0.24 mg
Acceleration =
= 0.24 g = 2.35 m/
The height of incline = 8 m
Length of the inclined edge = 16 m


v= 8.67 m/s
Answer:
spring deflection is x = (v2 / R + g) m / 4
Explanation:
We will solve this problem with Newton's second law. Let's analyze the situation the car goes down a road and finds a dip (hollow) that we will assume that it has a circular shape in the lower part has the car weight, elastic force and a centripetal acceleration
Let's write the equations on the Y axis of this description
Fe - W = m 
Where Fe is elastic force, W the weight and
the centripetal acceleration. The elastic force equation is
Fe = - k x
4 (k x) - mg = m v² / R
The four is because there are four springs, R is theradio of dip
We can calculate the deflection (x) of the springs
x = (m v2 / R + mg) / 4
x = (v2 / R + g) m / 4