1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stels [109]
3 years ago
11

A positively charged glass rod is bought close to a suspended metal needle. What

Physics
2 answers:
Darina [25.2K]3 years ago
7 0

Answer:

attracted

Explanation:

opposite charges attract each other when the rub against each other

EastWind [94]3 years ago
6 0

Answer:

This depends because the electrostatic force obeys the principle that states that force between both of the particles does not get affected by the charges of the other thus if the needle is getting attracted it possess negative charges( the opposite charge) .And if they repel it means they have the same charges ( positive charges).

You might be interested in
The Mars Curiosity rover was required to land on the surface of Mars with a velocity of 1 m/s. Given the mass of the landing veh
Aliun [14]

Answer:

The value is      A   = 39315 \  m^2

Explanation:

From the question we are told that

    The velocity which the rover is suppose to land with is  v  =  1 \ m/s

    The  mass of the rover and the parachute is  m  =  2270 \ kg

     The  drag coefficient is  C__{D}}  =  0.5

      The atmospheric density of Earth  is  \rho =  1.2 \  kg/m^3

     The acceleration due to gravity in Mars is  g_m  =  3.689 \  m/s^2

     

Generally the Mars  atmosphere density is mathematically represented as

          \rho_m  =  0.71 *  \rho

=>        \rho_m  =  0.71 *  1.2

=>        \rho_m  = 0.852 \  kg/m^3

Generally the drag force on the rover and the parachute  is mathematically represented as

          F__{D}} =  m  *  g_{m}

=>       F__{D}} =  2270   *  3.689  

=>       F__{D}} =  8374 \ N  

Gnerally this drag force is mathematically represented as

         F__{D}} =   C__{D}} *  A *  \frac{\rho_m * v^2 }{2}

Here A is the frontal area

So  

         A   =  \frac{2 *  F__D }{ C__D}  *  \rho_m  * v^2   }

=>       A   =  \frac{2 * 8374 }{ 0.5 *  0.852    *  1 ^2   }

=>       A   = 39315 \  m^2

8 0
3 years ago
If the sun were to vanish instantly would earth immediately fly out of its orbit explain why or why not
Zanzabum
<span>Answer: No, because Einstein demonstrated that nothing can exceed the speed of light in a vacuum and for something to happen instantly over that distance would require that speed to be exceeded. If somehow the sun were to vanish, without explosive effects, an enormous gravity wave would begin travelling outward affecting the planets at the speed of light - thus taking about 8 minutes to reach earth. But that is irrelevant because the only way to remove all that matter would be total conversion of the mass to energy and that energy would totally destroy everything - after the same 8 minutes. Mike1942f · 9 years ago</span>
7 0
3 years ago
A roller coaster has a mass of 275 kg. It sits at the top of a hill with height 85 m. If it drops from this hill, how fast is it
Minchanka [31]

kinematic equation

v squared = u squared + 2 a x s

v= sq root (0 + 2 10 x 65)

i thimk

4 0
3 years ago
Read 2 more answers
A 2kg block has 70J of KE. It then travels 1.5 meters up a hill. As it travels up the hill friction does -12J of work on the blo
Dima020 [189]

Answer:

v = 5.34[m/s]

Explanation:

In order to solve this problem, we must use the theorem of work and energy conservation. This theorem tells us that the sum of the mechanical energy in the initial state plus the work on or performed by a body must be equal to the mechanical energy in the final state.

Mechanical energy is defined as the sum of energies, kinetic, potential, and elastic.

E₁ = mechanical energy at initial state [J]

E_{1}=E_{pot}+E_{kin}+E_{elas}\\

In the initial state, we only have kinetic energy, potential energy is not had since the reference point is taken below 1.5[m], and the reference point is taken as potential energy equal to zero.

In the final state, you have kinetic energy and potential since the car has climbed 1.5[m] of the hill. Elastic energy is not available since there are no springs.

E₂ = mechanical energy at final state [J]

E_{2}=E_{kin}+E_{pot}

Now we can use the first statement to get the first equation:

E_{1}+W_{1-2}=E_{2}

where:

W₁₋₂ = work from the state 1 to 2.

E_{k}=\frac{1}{2} *m*v^{2} \\

E_{pot}=m*g*h

where:

h = elevation = 1.5 [m]

g = gravity acceleration = 9.81 [m/s²]

70 - 12 = \frac{1}{2}*2*v^{2}+2*9.81*1.5

58 = v^{2} +29.43\\v^{2} =28.57\\v=\sqrt{28.57}\\v=5.34[m/s]

4 0
3 years ago
Two parallel conducting plates are separated by 9.2 cm, and one of them is taken to be at a potential of zero volts.What is the
True [87]

Answer:

E=54V/cm

\Delta V=496.8V between the plates.

Explanation:

The equation for change of voltage between two points separated a distance d inside parallel conducting plates (<em>which have between them constant electric field</em>) is:

\Delta V=Ed

So to calculate our electric field strength we use the fact that the potential 8.8 cm from the zero volt plate is 475 V:

E=\frac{\Delta V}{d}=\frac{475 V}{8.8cm}=54V/cm

And we use the fact that the plates are 9.2cm apart to calculate the voltage between them:

\Delta V=Ed=(54V/cm)(9.2cm)=496.8V

8 0
3 years ago
Other questions:
  • A man is walking while riding a train. He says he is moving at 2 mph. A woman standing on a platform at a train station says the
    13·1 answer
  • A 0.80-kg soccer ball experinces an impulse of 25 N x s . Determine the momentum change of the soccer ball.
    8·2 answers
  • Please verify these are correct. No work needs to be shown unless I've made a mistake. Thank you.
    8·2 answers
  • A nucleus in a transition from an excited state emits a gamma-ray photon with an energy of 2.5 MeV. (a)
    10·1 answer
  • A friend throws a baseball horizontally. He releases it at a height of 2.0 m and it lands 21 m from his front foot, which is dir
    8·1 answer
  • a cricket ball of 70g moving with a velocity of 0.5 m/s is stopped by a player in 0.5s what is the force applied to stop the bal
    8·1 answer
  • A 60 kg gila monster on a merry go round is travelling in a circle with a radius of 3 m at a speed of 2m/s
    13·1 answer
  • A 12,500 kg railroad freight car travels on a level track at a speed of 5.2 m/s. It collides and couples with a 22,600 kg second
    8·1 answer
  • Two blocks with a mass of 2 kg collide in an elastic collision. The initial velocity of Block 1 is 10 m/s. Block 2 is traveling
    10·1 answer
  • A 0.50-kg red cart is moving rightward with a speed of 50 cm/s when it collides with a 0.50-kg blue cart that is initially at re
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!