FIRST Remove parentheses.
−12+8+5-9
Simplify -12+8 to -4
-4 + 5 — 9
Simplify
−4 + 5 −4+5 to 1
1 — 9
Simplify
-8 is your answer
Answer:
![\sqrt[4] {x^3}](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%20%7Bx%5E3%7D)
Step-by-step explanation:
At this point, we can transform the square root into a fourth root by squaring the argument, and bring into the other root:
![\sqrt x \cdot \sqrt[4] x =\sqrt [4] {x^2} \cdot \sqrt[4] x = \sqrt[4]{x^2\cdot x} = \sqrt[4] {x^3}](https://tex.z-dn.net/?f=%5Csqrt%20x%20%5Ccdot%20%5Csqrt%5B4%5D%20x%20%3D%5Csqrt%20%5B4%5D%20%7Bx%5E2%7D%20%5Ccdot%20%5Csqrt%5B4%5D%20x%20%3D%20%5Csqrt%5B4%5D%7Bx%5E2%5Ccdot%20x%7D%20%3D%20%5Csqrt%5B4%5D%20%7Bx%5E3%7D)
Alternatively, if you're allowed to use rational exponents, we can convert everything:
![\sqrt x \cdot \sqrt[4] x = x^{\frac12} \cdot x^\frac14 = x^{\frac12 +\frac14}= x^{\frac24 +\frac14}= x^\frac34 = \sqrt[4] {x^3}](https://tex.z-dn.net/?f=%5Csqrt%20x%20%5Ccdot%20%5Csqrt%5B4%5D%20x%20%3D%20x%5E%7B%5Cfrac12%7D%20%5Ccdot%20x%5E%5Cfrac14%20%3D%20x%5E%7B%5Cfrac12%20%2B%5Cfrac14%7D%3D%20x%5E%7B%5Cfrac24%20%2B%5Cfrac14%7D%3D%20x%5E%5Cfrac34%20%3D%20%5Csqrt%5B4%5D%20%7Bx%5E3%7D)
Ok sure—————-_______—-____
The answer should be 6 bro
Answer:
1000000000000000000001
Step-by-step explanation:
Done. You're welcome