Potential energy does.
A book on the floor has negative potential energy relative to the seat
of your chair, zero potential energy relative to the floor, and a whole
bunch of positive potential energy relative to the ground if the floor
is the floor of the passenger jet in which you are cruising and dropped
your book on the floor.
Answer:
a) t = 0.74s
b) D = 4.76m
c) Vf = 5.35m/s
Explanation:
The ball starts rolling when Vf = ωf*R.
We know that:
Vf = Vo - a*t
ωf = ωo + α*t
With a sum of forces on the ball:




With a sum of torque on the ball:



Replacing both accelerations:


t=0.74s
The distance will be:


Final velocity:

Vf=5.35m/s
Answer:
0.247 μC
Explanation:
As both sphere will be at the same level at wquilibrium, the direction of the electric force will be on the x axis. As you can see in the picture below, the x component of the tension of the string of any of the spheres should be equal to the electric force of repulsion. And its y component will be equal to the weight of one sphere. We can use trigonometry to find the components of the tensions:



The electric force is given by the expression:

In equilibrium, the distance between the spheres will be equal to 2 times the length of the string times sin(50):

And k is the coulomb constan equal to 9 *10^9 N*m^2/C^2. q1 y q2 is the charge of each particle, in this case, they are equal.


O 0.247 μC
Answer:
Torque, 
Explanation:
It is given that,
Length of the wrench, l = 0.5 m
Force acting on the wrench, F = 80 N
The force is acting upward at an angle of 60.0° with respect to a line from the bolt through the end of the wrench. We need to find the torque is applied to the nut. We know that torque acting on an object is equal to the cross product of force and distance. It is given by :



So, the torque is applied to the nut is 34.6 N.m. Hence, this is the required solution.