Answer:
See the attachment below for the graphics in part (a)
The initial velocity for this time interval is u = 61ft/sec and the final velocity is 0m/s because the car comes to a stop.
This a constant acceleration motion considering the given time interview over which the brakes are applied. So the equals for constant acceleration motion apply here.
Explanation:
The full solution can be found in the attachment below.
Thank you for reading. I hope this post is helpful to you.
The possible units for impulse would be:
<span>(N. s)
</span><span>(kg. m/s)</span>
Answer:
6400 W (or) 6.4 KW
Explanation:
Formula we use,
→ P = I²R
Let's solve for the power of device,
→ P = I²R
→ P = (8)² × 100
→ P = 64 × 100
→ [ P = 6400 W ]
Hence, the power is 6400 W.
Answer:
C. 28.09 amu
Explanation:
The natural occurring element exist in 3 isotopic forms: namely X-28 (27.977 amu, 92.23% abundance), X-29 (28.976 amu, 4.67% abundance) and X-30 (29.974 amu, 3.10% abundance).
The atomic weight of elements depends on the isotopic abundance. If you know the fractional abundance and the mass of the isotopes the atomic weight can be computed.
The atomic weight is computed as follows:
atomic weight = mass of X-28 × fractional abundance + mass of X-29 × fractional abundance + mass of X-30 × fractional abundance
atomic weight = 27.977 × 0.9223 + 28.976 × 0.0467 + 29.974 × 0.0310
atomic weight = 25.8031871 + 1.3531792 + 0.929194
atomic weight = 28.0855603 amu
To 2 decimal place atomic weight = 28.09 amu