1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Charra [1.4K]
4 years ago
6

Some gliders are launched from the ground by means of a winch, which rapidly reels in a towing cable attached to the glider. Wha

t average power must the winch supply in order to accelerate a 156-kg ultralight glider from rest to 24.9 m/s over a horizontal distance of 58.0 m? Assume that friction and air resistance are negligible, and that the tension in the winch cable is constant.
Physics
1 answer:
aliina [53]4 years ago
6 0

Answer:

P=627.47W

Explanation:

To solve this problem we have to take into account, that the work done by the winch is

W=Fh

the force, at least must equal the gravitational force

F=Mg=(156kg)(9.8\frac{m}{s^2})=1258.8N

with force the tension in the cable makes the winch go up.

The work done is

W=(1258.8N)(58.0m)=73010.4J

To calculate the power we need to know what is the time t. But first we have to compute the acceleration

The acceleration will be

v_f^2=v_0+2ah\\a=\frac{v_f^2}{2h}=\frac{(24.9\frac{m}{s})}{2(58.0m)}=0.214\frac{m}{s^2}

and the time t

v_f=v_0+at\\t=\frac{v_f}{a}=116.35s

The power will be

P=\frac{W}{t}=\frac{73010.4J}{116.35s}=627.47W

HOPE THIS HELPS!!

You might be interested in
In a choir practice room, two parallel walls are 5.70 m apart. The singers stand against the north wall. The organist faces the
ololo11 [35]

Answer:

4.98 m

Explanation:

Given that

Width of the mirror, d = 0.6 m

Organist distance to the mirror, s = 0.78 m

Distance between the singer and the organist, S = 5.7 + 0.78 = 6.48 m

Width of north wall, D?

Using the simple relationship

D/S = d/s, on rearranging

D = dS /s

D = (0.6 * 6.48) / 0.78

D = 3.888 / 0.78

D = 4.98 m

Therefore, we can conclude that the Width of north wall is 4.98 m

7 0
3 years ago
A small block is attached to an ideal spring and is moving in SHM on a horizontal, frictionless surface. When the amplitude of t
Maslowich

Answer:

a) The time taken to travel from 0.18 m to -0.18m when the amplitude is doubled = 2.76 s

b) The time taken to travel from 0.09 m to -0.09 m when the amplitude is doubled = 0.92 s

Explanation:

a) The period of a simple harmonic motion is given as T = (1/f) = (2π/w)

It is evident that the period doesn't depend on amplitude, that is, it is independent of amplitude.

Hence, the time it would take the block to move from its amplitude point to the negative of the amplitude point (0.09 m to -0.09 m) in the first case will be the same time it will take the block to move from its amplitude point to negative of the amplitude point in the second case (0.18 m to -0.18 m).

Hence, time taken to travel from 0.18 m to -0.18m when the amplitude is doubled is 2.76 s

b) Now that the amplitude has been doubled, the time taken to move from amplitude point to the negative amplitude point in simple harmonic motion, just like with waves, is exactly half of the time period.

The time period is defined as the time taken to complete a whole cycle and a while cycle involves movement from the amplitude to point to the negative amplitude point then fully back to the amplitude point. Hence,

0.5T = 2.76 s

T = 2 × 2.76 = 5.52 s

Note that the displacement of a body undergoing simple harmonic motion from the equilibrium position is given as

y = A cos wt (provided that there's no phase difference, that is, Φ = 0)

A = amplitude = 0.18 m

w = (2π/5.52) = 1.138 rad/s

When y = 0.09 m, the time = t₁₂ = ?

0.09 = 0.18 Cos 1.138t₁ (angles in radians)

Cos 1.138t₁ = 0.5

1.138t₁ = arccos (0.5) = (π/3)

t₁ = π/(3×1.138) = 0.92 s

When y = -0.09 m, the time = t₂ = ?

-0.09 = 0.18 Cos 1.138t₂ (angles in radians)

Cos 1.138t₂ = -0.5

1.138t₂ = arccos (-0.5) = (2π/3)

t₂ = 2π/(3×1.138) = 1.84 s

Time taken to move from y = 0.09 m to y = -0.09 m is then t = t₂ - t₁ = 1.84 - 0.92 = 0.92 s

Hope this Helps!!!

3 0
3 years ago
Two particles are moving along the x axis. Particle 1 has a mass m₁ and a velocity v₁ = +4.7 m/s. Particle 2 has a mass m₂ and a
nirvana33 [79]

Answer:

m₁ / m₂ = 1.3

Explanation:

We can work this problem with the moment, the system is formed by the two particles

The moment is conserved, to simulate the system the particles initially move with a moment and suppose a shock where the particular that, without speed, this determines that if you center, you should be stationary, which creates a moment equal to zero

    p₀o = m₁ v₁ + m₂ v₂

    pf = 0

    m₁ v₁ + m₂ v₂ = 0

    m₁ / m₂ = -v₂ / v₁

    m₁ / m₂=  - (-6.2) / 4.7

     m₁ / m₂ = 1.3

Another way to solve this exercise is to use the mass center relationship

    Xcm = 1/M    (m₁ x₁ + m₂ x₂)

We derive from time

   Vcm = 1/M   (m₁ v₁ + m₂v₂)

As they say the velocity of the center of zero masses

    0 = 1/M   (m₁ v₁ + m₂v₂)

   m₁ v₁ + m₂v₂ = 0

    m₁ / m₂ = -v₂ / v₁

   m₁ / m₂ = 1.3

4 0
3 years ago
two cars go through 2 different crashes. car one 1 experiences a 500N impulse for a duration for 15s, while car2 experiences the
likoan [24]

Answer:

Conservation of momentum.

Momentum is zero after collision, no direction or speed.

Explanation:

7 0
3 years ago
A ship maneuvers to within 2.46×10³ m of an island’s 1.80 × 10³ m high mountain peak and fires a projectile at an enemy ship 6.1
Nesterboy [21]

Answer:

The distance close to the peak is 597.4 m.

Explanation:

Given that,

Distance of the first ship from the mountain d=2.46\times10^{3}\ m

Height of islandh=1.80\times10^{3}\ m

Distance of the enemy ship from the mountain d'=6.10\times10^{2}\ m

Initial velocity v=2.55\times10^{2}\ m/s

Angle = 74.9°

We need to calculate the horizontal component of initial velocity

Using formula of horizontal component

v_{x}=v\cos\theta

Put the value into the formula

v_{x}=2.55\times10^{2}\cos74.9

v_{x}=66.42\ m/s

We need to calculate the vertical component of initial velocity

Using formula of vertical component

v_{y}=v\sin\theta

Put the value into the formula

v_{y}=2.55\times10^{2}\sin74.9

v_{y}=246.19\ m/s

We need to calculate the time

Using formula of time

t=\dfrac{d}{v_{x}}

t=\dfrac{2.46\times10^{3}}{66.42}

t=37.03\ sec

We need to calculate the height of the shell on reaching the mountain

Using equation of motion

H= v_{y}t-\dfrac{1}{2}gt^2

Put the value in the equation

H=246.19\times37.03-\dfrac{1}{2}\times9.8\times(37.03)^2

H=2397.4\ m

We need to calculate the distance close to the peak

Using formula of distance

H'=H-h

Put the value into the formula

H'=2397.4-1800

H'=597.4\ m

Hence, The distance close to the peak is 597.4 m.

6 0
3 years ago
Other questions:
  • A solid disc with a radius of 5.00 m and a mass of 20.0 kg is initially at rests and lies on the plane of the paper. A smaller s
    5·1 answer
  • Why plate tectonics is a scientific theory and not a scientific law.
    7·1 answer
  • Hyperkinetic means too little movement true or false?
    15·1 answer
  • Texas has 4,015,000 beef cows in 2013. If one cow produced approx 209g of methane per day. How much methane was produced by the
    10·1 answer
  • Heelp meeee science (“2”)<br><br><br> I want answer true
    14·2 answers
  • Suppose you wanted to increase the force between two point charges by a factor of 5. By what factor must you change the distance
    8·1 answer
  • How efficient are the small and large scale solar-power systems used in individual homes and industrial settings?
    5·1 answer
  • Calculate their densties in Si unit.<br>200mg,0.0004m​
    11·1 answer
  • Object A represents fixed negatively charged particle and Object B represents fixed. positively-charged particle. Object ( shows
    5·1 answer
  • What is a sound of electronic?​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!