Answer:
An “international employee” is defined as an employee of Stanford University whose work site is located.
Explanation:
If the spaceship's Physicist happens to be hanging out of one side
of the ship, and he measures the speed of the photons as they pass
him and leave the ship, he'll see them passing him at 'c' ... the speed
of light.
When those photons pass somebody who happens to be in their
path, and he decides to measure their speed, he'll see them move
past him at 'c' ... the speed of light.
It doesn't matter whether the observer who measures them is
moving, or at what speed.
And it doesn't matter what source the photons come from, or
whether the source is moving, or at what speed.
And it doesn't matter what the photons' wavelength/frequency is ...
anything from radio to gamma rays.
The photons pass everybody at 'c' ... the speed of light.
Yes, I hear you. That can't be true. It's crazy.
Maybe it's crazy, but it's true.
Answer:

Explanation:
Given that,
Initially, the spaceship was at rest, u = 0
Final velocity of the spaceship, v = 11 m/s
Distance accelerated by the spaceship, d = 213 m
We need to find the acceleration experienced by the occupants of the spaceship during the launch. It is a concept based on the equation of kinematics. Using the third equation of motion to find acceleration.

So, the acceleration experienced by the occupants of the spaceship is
.
Explanation:
angular velocity is given by


w = 0.626
now tangential velocity is
V = rw
= 25 x 0.626
= 15.65 m/s
Turn it into a triangle pretty much. total displacement eastward is 15cm. total displacement northward is 35cm. now use the Pythagorean theorem which will be squareroot of 15squared+35squared. this gives you 38.08cm northeastward.<span />