(a) The number of vacancies per cubic centimeter is 1.157 X 10²⁰
(b) ρ = n X (AM) / v X Nₐ
<u>Explanation:</u>
<u />
Given-
Lattice parameter of Li = 3.5089 X 10⁻⁸ cm
1 vacancy per 200 unit cells
Vacancy per cell = 1/200
(a)
Number of vacancies per cubic cm = ?
Vacancies/cm³ = vacancy per cell / (lattice parameter)³
Vacancies/cm³ = 1 / 200 X (3.5089 X 10⁻⁸cm)³
Vacancies/cm³ = 1.157 X 10²⁰
Therefore, the number of vacancies per cubic centimeter is 1.157 X 10²⁰
(b)
Density is represented by ρ
ρ = n X (AM) / v X Nₐ
where,
Nₐ = Avogadro number
AM = atomic mass
n = number of atoms
v = volume of unit cell
In order to understand a monomer let´s first see the structure of a polymer. As an example, in the first figure polyethylene (or polyethene) is shown. This polymer, like every other one, is composed of many repeated subunits, these subunits are called monomer. In the second figure, polyethylene's monomer is shown.
The heat transferred to and the work produced by the steam during this process is 13781.618 kJ/kg
<h3>
How to calcultae the heat?</h3>
The Net Change in Enthalpy will be:
= m ( h2 - h1 ) = 11.216 ( 1755.405 - 566.78 ) = 13331.618 kJ/kg
Work Done (Area Under PV curve) = 1/2 x (P1 + P2) x ( V1 - V2)
= 1/2 x ( 75 + 225) x (5 - 2)
W = 450 KJ
From the First Law of Thermodynamics, Q = U + W
So, Heat Transfer = Change in Internal Energy + Work Done
= 13331.618 + 450
Q = 13781.618 kJ/kg
Learn more about heat on:
brainly.com/question/13439286
#SP1
Answer:
See explaination and attachment.
Explanation:
Iteration method is a repetitive method applied until the desired result is achieved.
Let the given equation be f(x) = 0 and the value of x to be determined. By using the Iteration method you can find the roots of the equation. To find the root of the equation first we have to write equation like below
x = pi(x)
Let x=x0 be an initial approximation of the required root α then the first approximation x1 is given by x1 = pi(x0).
Similarly for second, thrid and so on. approximation
x2 = pi(x1)
x3 = pi(x2)
x4 = pi(x3)
xn = pi(xn-1).
please go to attachment for the step by step solution.
Answer:
fluid nozzle that is too large