Answer:
1. Effect of air pressure
2. air- powered wheel chair
3. Pneumatic valves
Explanation:
1. In any pneumatic device, the mipact of air pressure to produce the moving effect on an heavy object is unexpected.
2. pneumatice demultiplexer when air in comprressed tank is allowed released to cause movement of the chair.
3. In industries, a pneumatic valve operates by force of air when actuated. A signal causes actuation of coil. When coil is energized, compressed high pressure air is allowe to enter in a small cylinder and cause operation of valve
Answer:
You need a 120V to 24V commercial transformer (transformer 1:5), a 100 ohms resistance, a 1.5 K ohms resistance and a diode with a minimum forward current of 20 mA (could be 1N4148)
Step by step design:
- Because you have a 120V AC voltage supply you need an efficient way to reduce that voltage as much as possible before passing to the rectifier, for that I recommend a standard 120V to 24V transformer. 120 Vrms = 85 V and 24 Vrms = 17V = Vin
- Because 17V is not 15V you still need a voltage divider to step down that voltage, for that we use R1 = 100Ω and R2 = 1.3KΩ. You need to remember that more than 1 V is going to be in the diode, so for our calculation we need to consider it. Vf = (V*R2)/(R1+R2), V = Vin - 1 = 17-1 = 16V and Vf = 15, Choosing a fix resistance R1 = 100Ω and solving the equation we find R2 = 1.5KΩ
- Finally to select the diode you need to calculate two times the maximum current and that would be the forward current (If) of your diode. Imax = Vf/R2 = 10mA and If = 2*Imax = 20mA
Our circuit meet the average voltage (Va) specification:
Va = (15)/(pi) = 4.77V considering the diode voltage or 3.77V without considering it
Answer:
A) 
B)
Explanation:
Given data:
P-1 = 100 lbf/in^2
degree f


effeciency = 80%
from steady flow enerfy equation

where h1 and h2 are inlet and exit enthalpy
for P1 = 100 lbf/in^2 and T1 = 500 degree F


for P1 = 40 lbf/in^2


exit enthalapy h_2


from above equation
[1 Btu/lbm = 25037 ft^2/s^2]

b) amount of entropy


at ![h_2 = 1197.77 Btu/lbm [\tex] and [tex]P_2 = 40 lbf/in^2](https://tex.z-dn.net/?f=h_2%20%3D%201197.77%20Btu%2Flbm%20%5B%5Ctex%5D%20%20and%20%5Btex%5DP_2%20%3D%2040%20lbf%2Fin%5E2)


Answer:
umax = 0.1259ft/s
Explanation:
Given:
•Distance between plates, B = 0.01ft
•Pressure difference decrease, 
•Fluid viscosity, u = 10^-³lbf-s/ft²
Specific gravity, S = 0.80
Max velocity in the z-direction will be:
![u_max= [\frac{B^2y}{8u}]\frac{dh}{ds}](https://tex.z-dn.net/?f=u_max%3D%20%5B%5Cfrac%7BB%5E2y%7D%7B8u%7D%5D%5Cfrac%7Bdh%7D%7Bds%7D)

Substituting for h in the first equation, we have:
![\frac{d}{dz}[\frac{p}{y}+z]](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%7D%7Bdz%7D%5B%5Cfrac%7Bp%7D%7By%7D%2Bz%5D)


= -0.20192
Substituting dh/dz value in the first equation (umax), we have:

umax = 0.1259ft/s