1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
timurjin [86]
1 year ago
5

A 46.0-g meter stick is balanced at its midpoint (50.0 cm, zero point is a left end of stick). Then a 210.0-g weight is hung wit

h a light string from the l2 =70.0-cm point, and a 105-g weight is hung from the l1 = 10.0-cm point. Calculate the clockwise and counterclockwise torques acting on the board due to the four forces about the following axes: Calculate the clockwise torque if the axis is the 50-cm point. (Express your answer to three significant figures.) Calculate the counterclockwise torque if the axis is the 50-cm point. (Express your answer to three significant figures.) Calculate the clockwise torque if the axis is the 100-cm point. (Express your answer to three significant figures.) Calculate the counterclockwise torque if the axis is the 100-cm point. (Express your answer to three significant figures.)
Engineering
1 answer:
Anna71 [15]1 year ago
7 0

Clockwise torque due to 100g is 0.1029 Nm and 200g is 1.4406 Nm. Clockwise torque due to stick mass is 0.2254 Nm and Counter-clockwise torque due to normal force is 1.7689 Nm.            

<h3>What is clockwise torque?</h3>

The right-hand rule for cross products determines the direction of torque, which is calculated as the cross product of force and distance. Your thumb will point in the direction of the torque if you place your palm in the direction of the applied force and extend your fingers from the pivot point in that direction.

A related right-hand rule relates the direction of the rotation to the direction of the torque. Your fingers will curl in the direction of rotation if you point your thumb in the direction of the torque.

Positive torques cause counter clockwise rotation, while negative torques cause clockwise rotation.

The sum of all torques must be zero at equilibrium since an object in equilibrium has no net torque.

When the force is applied in a direction perpendicular to the line connecting the pivot and the force, the torque is at its greatest.

You can calculate the torque's magnitude using

                                             \begin{displaymath}\tau =rF_{\bot }=rF\sin \theta .\end{displaymath}

To solve problems involving torques, follow these eight steps: read the issue, create a free-body diagram, locate the pivot point, write down the expressions for all torques, For equilibrium conditions, set the sum of torques to zero, list all known variables, pick the desired variable(s), write down equations involving those variable(s), solve the equations, plug in numbers, and test your solution.

Clockwise torque due to 100 g                                                                         ⇒ T1 = 0.105* 9.8* 0.1 = 0.1029 Nm

Clockwise torque due to 200 g                                                                                                      ⇒ T2 = 0.210* 9.8* 0.7 = 1.4406 Nm

Clockwise torque due to stick mass                                                                               ⇒ T3 = 0.046* 0.5* 9.8 =0.2254 Nm

Counter-clockwise torque due to normal force                                                                             ⇒ T4 = (0.046 + 0.21 + 0.105)*9.8* 0.5 = 1.7689 Nm

Learn more about torque

brainly.com/question/1544595

#SPJ4

You might be interested in
I) A sag vertical curve is to be designed to join a 4% grade to a 2% grade. If the design
Burka [1]

Answer:

=4/5 because I'm not going to go back in a year meaning that they are you are

4 0
2 years ago
A well-insulated tank in a vapor power plant operates at steady state. Saturated liquid water enters at inlet 1 at a rate of 125
kompoz [17]

Answer:

a. The mass flow rate (in lbm/s) is 135lbm/s

b. The temperature (in o F) is 200.8°F

Explanation:

We assume that potential energy and kinetic energy are negligible and the control volume operates at a steady state.

Given

a. The mass flow rate (in lbm/s) is 135lbm/s

b.

m1 = Rate at inlet 1 = 125lbm/s

m2 = Rate at inlet 2 = 10lbm/s

The mass flow rate (in lbm/s) is calculated as m1 + m2

Mass flow rate = 125lbm/s + 10lbm/s

Mass flow rate = 135lbm/s

Hence, the mass flow rate (in lbm/s) is 135lbm/s

b. To calculate the temperature.

First we need to determine the enthalpy h1 at 14.7psia

Using table A-3E (thermodynamics)

h1 = 180.15 Btu/Ibm

h2 at 14.7psia and 60°F = 28.08 Btu/Ibm

Calculating h3 using the following formula

h3 = (h1m1 + h2m2) / M3

h3 = (180.15 * 125 + 28.08 * 10)/135

h3 = 168.8855555555555

h3 = 168.89 Btu/Ibm

To get the final temperature; we make use of table A-2E of thermodynamics.

Because h3 < h1, it means the liquid is at a compressed state.

The corresponding temperature at h3 = 168.89 is 200.8°F

The temperature (in o F) is 200.8°F

6 0
3 years ago
What is an example of a traditional career?
vladimir2022 [97]

Answer:

C, Teacher

Explanation:

7 0
3 years ago
Read 2 more answers
A heat pump receives heat from a lake that has an average wintertime temperature of 6o C and supplies heat into a house having a
Dafna1 [17]

Answer:

a) \dot W = 1.062\,kW

Explanation:

a) Let consider that heat pump is reversible, so that the Coefficient of Performance is:

COP_{HP} = \frac{T_{H}}{T_{H}-T_{L}}

COP_{HP} = \frac{298.15\,K}{298.15\,K-279.15\,K}

COP_{HP} = 15.692

The minimum heat received by the house must be equal to the heat lost to keep the average temperature constant. Hence:

\dot Q_{H} = 60000\,\frac{kJ}{h}

The minimum power supplied to the heat pump is:

\dot W = \frac{\dot Q_{H}}{COP}

\dot W = \frac{\left(60000\,\frac{kJ}{h}  \right)\cdot \left(\frac{1\,h}{3600\,s}  \right)}{15.692}

\dot W = 1.062\,kW

5 0
3 years ago
What is the mechanical advantage of a pulley with 3 support ropes?
snow_tiger [21]

Answer:

The mechanical advantage is 3 to 1

Explanation:

A frictionless pulley with three support ropes carries equal tension on each of the ropes thus;

Tension in each pulley rope = T

Total tension in the 3 ropes = 3 × T = 3·T

Direction of the tension forces on each rope = Unidirectional

Total force provided by the 3 ropes = 3·T

Therefore, a force, T, applied at the end of the rope will result in a lifting force of 3·T

Hence, the mechanical advantage = 3·T to T which is presented as follows;

Mechanical \ advantage = \dfrac{3 \cdot T}{T}  = \dfrac{3}{1}

The mechanical advantage = 3 to 1.

5 0
3 years ago
Other questions:
  • 5. Which of these least accurately describes what happens when abnormal combustion raises the temperature and pressure inside th
    8·1 answer
  • A 3-kg block rests on top of a 2-kg block supported by, but not attached to, a spring of constant 40 N/m. The upper block is sud
    14·2 answers
  • A torsion member has an elliptical cross section with major and minor dimensions of 50.0 mm and 30.0 mm, respectively. The yield
    10·1 answer
  • The themes around which social sciences texts are organized boost understanding by
    11·1 answer
  • The basic concept of feedback control is that an error must exist before some corrective action can be made?
    12·1 answer
  • Hi plz delete this question i had to edit it cuz it was wrong question
    5·1 answer
  • The number of pulses per second from IGBTs is referred to as
    10·1 answer
  • Write a Nested While Loop that will increment the '*' from 1 to 10.
    6·1 answer
  • What is the first step of the engineering design process?
    9·2 answers
  • Which option identifies why Ethan’s skills are valuable to his team in the following scenario?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!