Do you have a picture of the question?
Answer:
<h2>Steel</h2>
Explanation:
Steel is the metal that using in planes.
Aluminum and titanium also used in this aircraft industry.
Aluminum is ideal for aircraft manufacture because it's lightweight and strong.
<em>hope</em><em> </em><em>this</em><em> </em><em>helps</em><em>!</em><em>!</em>
<em>have</em><em> </em><em>a</em><em> </em><em>nice</em><em> </em><em>day</em><em>!</em>
<em>follow</em><em> </em><em>me</em><em> </em><em>=</em><em>=</em><em>></em><em> </em><em>Hi1315</em>
Answer:
Given that the temperature of the window is below the dew point it will condensate.
Explanation:
A psychrometric chart (like the one attached) will give you the information needed. This chart is for 14.696 psia.
On the bottom horizontal axes you have the dry-bulb temperature, in this case 70°F, going up from this point you can reach the 50% relative humidity curve (red point on chart), going horizontally from this point to the 100% relative humidity you get the dew point temperature (the point at which moisture will condensate) (blue point on chart). In this case the dew point is 50°C. Given that the temperature of the window is below the dew point it will condensate.
Answer:
Valvular stenosis , Valvular prolapse , Regurgitation,
Explanation:
Answer:
The tube surface temperature immediately after installation is 120.4°C and after prolonged service is 110.8°C
Explanation:
The properties of water at 100°C and 1 atm are:
pL = 957.9 kg/m³
pV = 0.596 kg/m³
ΔHL = 2257 kJ/kg
CpL = 4.217 kJ/kg K
uL = 279x10⁻⁶Ns/m²
KL = 0.68 W/m K
σ = 58.9x10³N/m
When the water boils on the surface its heat flux is:

For copper-water, the properties are:
Cfg = 0.0128
The heat flux is:
qn = 0.9 * 18703.42 = 16833.078 W/m²

The tube surface temperature immediately after installation is:
Tinst = 100 + 20.4 = 120.4°C
For rough surfaces, Cfg = 0.0068. Using the same equation:
ΔT = 10.8°C
The tube surface temperature after prolonged service is:
Tprolo = 100 + 10.8 = 110.8°C