Answer: the brand of paper towel
Explanation: the independent variable is the one you control in an experiment. the dependent variable would be the amount of water in the paper towel
Answer: 50J
Explanation:
Mechanical energy follows the same principles of kinetic energy and potential energy, it is conserved. So Ei = Ef.
Mechanical energy is the sum of ALL energy's. There is no friction, so its just kinetic plus potential.
37.5 + 12.5 = 50J
Since the particle has not touched the ground, it has not transferred any energy to the ground yet, therefore the mechanical energy must still be 50J; mostly in kinetic energy with a very small amount of potential because of the low height relative to the ground.
Heat
required in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC(T2-T1)
Heat = 1 kg (4.18 kJ / kg C)( 1 C)
<span>Heat = 4.18 kJ energy needed</span></span>
The correct answer from the choices listed above is the first option. The statement that is true would be that c<span>ompound AB has chemical and physical properties that are completely different from those of A and B. They completely different substances with different properties.</span>
The equivalent capacitance (
) of an electrical circuit containing four capacitors which are connected in parallel is equal to: A. 21 F.
<h3>The types of circuit.</h3>
Basically, the components of an electrical circuit can be connected or arranged in two forms and these are;
<h3>What is a parallel circuit?</h3>
A parallel circuit can be defined as an electrical circuit with the same potential difference (voltage) across its terminals. This ultimately implies that, the equivalent capacitance (
) of two (2) capacitors which are connected in parallel is equal to the sum of the individual (each) capacitances.
Mathematically, the equivalent capacitance (
) of an electrical circuit containing four capacitors which are connected in parallel is given by this formula:
Ceq = C₁ + C₂ + C₃ + C₄
Substituting the given parameters into the formula, we have;
Ceq = 10 F + 3 F + 7 F + 1 F
Equivalent capacitance, Ceq = 21 F.
Read more equivalent capacitance here: brainly.com/question/27548736
#SPJ1